from typing import Any, Literal import numpy as np from tianshou.data import Batch, ReplayBuffer from tianshou.data.batch import BatchProtocol from tianshou.data.types import RolloutBatchProtocol from tianshou.policy import BasePolicy from tianshou.policy.base import TLearningRateScheduler try: from tianshou.env.pettingzoo_env import PettingZooEnv except ImportError: PettingZooEnv = None # type: ignore class MultiAgentPolicyManager(BasePolicy): """Multi-agent policy manager for MARL. This multi-agent policy manager accepts a list of :class:`~tianshou.policy.BasePolicy`. It dispatches the batch data to each of these policies when the "forward" is called. The same as "process_fn" and "learn": it splits the data and feeds them to each policy. A figure in :ref:`marl_example` can help you better understand this procedure. :param policies: a list of policies. :param env: a PettingZooEnv. :param action_scaling: if True, scale the action from [-1, 1] to the range of action_space. Only used if the action_space is continuous. :param action_bound_method: method to bound action to range [-1, 1]. Only used if the action_space is continuous. :param lr_scheduler: if not None, will be called in `policy.update()`. """ def __init__( self, *, policies: list[BasePolicy], # TODO: 1 why restrict to PettingZooEnv? # TODO: 2 This is the only policy that takes an env in init, is it really needed? env: PettingZooEnv, action_scaling: bool = False, action_bound_method: Literal["clip", "tanh"] | None = "clip", lr_scheduler: TLearningRateScheduler | None = None, ) -> None: super().__init__( action_space=env.action_space, observation_space=env.observation_space, action_scaling=action_scaling, action_bound_method=action_bound_method, lr_scheduler=lr_scheduler, ) assert len(policies) == len(env.agents), "One policy must be assigned for each agent." self.agent_idx = env.agent_idx for i, policy in enumerate(policies): # agent_id 0 is reserved for the environment proxy # (this MultiAgentPolicyManager) policy.set_agent_id(env.agents[i]) self.policies = dict(zip(env.agents, policies, strict=True)) def replace_policy(self, policy: BasePolicy, agent_id: int) -> None: """Replace the "agent_id"th policy in this manager.""" policy.set_agent_id(agent_id) self.policies[agent_id] = policy # TODO: violates Liskov substitution principle def process_fn( # type: ignore self, batch: RolloutBatchProtocol, buffer: ReplayBuffer, indice: np.ndarray, ) -> BatchProtocol: """Dispatch batch data from obs.agent_id to every policy's process_fn. Save original multi-dimensional rew in "save_rew", set rew to the reward of each agent during their "process_fn", and restore the original reward afterwards. """ results = {} assert isinstance( batch.obs, BatchProtocol, ), f"here only observations of type Batch are permitted, but got {type(batch.obs)}" # reward can be empty Batch (after initial reset) or nparray. has_rew = isinstance(buffer.rew, np.ndarray) if has_rew: # save the original reward in save_rew # Since we do not override buffer.__setattr__, here we use _meta to # change buffer.rew, otherwise buffer.rew = Batch() has no effect. save_rew, buffer._meta.rew = buffer.rew, Batch() # type: ignore for agent, policy in self.policies.items(): agent_index = np.nonzero(batch.obs.agent_id == agent)[0] if len(agent_index) == 0: results[agent] = Batch() continue tmp_batch, tmp_indice = batch[agent_index], indice[agent_index] if has_rew: tmp_batch.rew = tmp_batch.rew[:, self.agent_idx[agent]] buffer._meta.rew = save_rew[:, self.agent_idx[agent]] if not hasattr(tmp_batch.obs, "mask"): if hasattr(tmp_batch.obs, "obs"): tmp_batch.obs = tmp_batch.obs.obs if hasattr(tmp_batch.obs_next, "obs"): tmp_batch.obs_next = tmp_batch.obs_next.obs results[agent] = policy.process_fn(tmp_batch, buffer, tmp_indice) if has_rew: # restore from save_rew buffer._meta.rew = save_rew return Batch(results) def exploration_noise( self, act: np.ndarray | BatchProtocol, batch: RolloutBatchProtocol, ) -> np.ndarray | BatchProtocol: """Add exploration noise from sub-policy onto act.""" assert isinstance( batch.obs, BatchProtocol, ), f"here only observations of type Batch are permitted, but got {type(batch.obs)}" for agent_id, policy in self.policies.items(): agent_index = np.nonzero(batch.obs.agent_id == agent_id)[0] if len(agent_index) == 0: continue act[agent_index] = policy.exploration_noise(act[agent_index], batch[agent_index]) return act def forward( # type: ignore self, batch: Batch, state: dict | Batch | None = None, **kwargs: Any, ) -> Batch: """Dispatch batch data from obs.agent_id to every policy's forward. :param state: if None, it means all agents have no state. If not None, it should contain keys of "agent_1", "agent_2", ... :return: a Batch with the following contents: :: { "act": actions corresponding to the input "state": { "agent_1": output state of agent_1's policy for the state "agent_2": xxx ... "agent_n": xxx} "out": { "agent_1": output of agent_1's policy for the input "agent_2": xxx ... "agent_n": xxx} } """ results: list[tuple[bool, np.ndarray, Batch, np.ndarray | Batch, Batch]] = [] for agent_id, policy in self.policies.items(): # This part of code is difficult to understand. # Let's follow an example with two agents # batch.obs.agent_id is [1, 2, 1, 2, 1, 2] (with batch_size == 6) # each agent plays for three transitions # agent_index for agent 1 is [0, 2, 4] # agent_index for agent 2 is [1, 3, 5] # we separate the transition of each agent according to agent_id agent_index = np.nonzero(batch.obs.agent_id == agent_id)[0] if len(agent_index) == 0: # (has_data, agent_index, out, act, state) results.append((False, np.array([-1]), Batch(), Batch(), Batch())) continue tmp_batch = batch[agent_index] if isinstance(tmp_batch.rew, np.ndarray): # reward can be empty Batch (after initial reset) or nparray. tmp_batch.rew = tmp_batch.rew[:, self.agent_idx[agent_id]] if not hasattr(tmp_batch.obs, "mask"): if hasattr(tmp_batch.obs, "obs"): tmp_batch.obs = tmp_batch.obs.obs if hasattr(tmp_batch.obs_next, "obs"): tmp_batch.obs_next = tmp_batch.obs_next.obs out = policy( batch=tmp_batch, state=None if state is None else state[agent_id], **kwargs, ) act = out.act each_state = out.state if (hasattr(out, "state") and out.state is not None) else Batch() results.append((True, agent_index, out, act, each_state)) holder: Batch = Batch.cat( [{"act": act} for (has_data, agent_index, out, act, each_state) in results if has_data], ) state_dict, out_dict = {}, {} for (agent_id, _), (has_data, agent_index, out, act, state) in zip( self.policies.items(), results, strict=True, ): if has_data: holder.act[agent_index] = act state_dict[agent_id] = state out_dict[agent_id] = out holder["out"] = out_dict holder["state"] = state_dict return holder def learn( self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any, ) -> dict[str, float | list[float]]: """Dispatch the data to all policies for learning. :return: a dict with the following contents: :: { "agent_1/item1": item 1 of agent_1's policy.learn output "agent_1/item2": item 2 of agent_1's policy.learn output "agent_2/xxx": xxx ... "agent_n/xxx": xxx } """ results = {} for agent_id, policy in self.policies.items(): data = batch[agent_id] if not data.is_empty(): out = policy.learn(batch=data, **kwargs) for k, v in out.items(): results[agent_id + "/" + k] = v return results