#!/usr/bin/env python from __future__ import absolute_import import tensorflow as tf import gym import numpy as np import time # our lib imports here! It's ok to append path in examples import sys sys.path.append('..') from tianshou.core import losses from tianshou.data.batch import Batch import tianshou.data.advantage_estimation as advantage_estimation import tianshou.core.policy.dqn as policy # TODO: fix imports as zhusuan so that only need to import to policy import tianshou.core.value_function.action_value as value_function import tianshou.data.replay_buffer.proportional as proportional import tianshou.data.replay_buffer.rank_based as rank_based import tianshou.data.replay_buffer.naive as naive import tianshou.data.replay_buffer.Replay as Replay # TODO: why this solves cartpole even without training? if __name__ == '__main__': env = gym.make('CartPole-v0') observation_dim = env.observation_space.shape action_dim = env.action_space.n clip_param = 0.2 num_batches = 10 batch_size = 512 seed = 0 np.random.seed(seed) tf.set_random_seed(seed) ### 1. build network with pure tf observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim) def my_network(): net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh) net = tf.layers.dense(net, 32, activation=tf.nn.tanh) action_values = tf.layers.dense(net, action_dim, activation=None) return None, action_values # no policy head ### 2. build policy, loss, optimizer dqn = value_function.DQN(my_network, observation_placeholder=observation_ph, weight_update=100) pi = policy.DQN(dqn) dqn_loss = losses.qlearning(dqn) total_loss = dqn_loss global_step = tf.Variable(0, name='global_step', trainable=False) optimizer = tf.train.AdamOptimizer(1e-4) train_op = optimizer.minimize(total_loss, var_list=dqn.trainable_variables, global_step=tf.train.get_global_step()) # replay_memory = naive.NaiveExperience({'size': 1000}) replay_memory = rank_based.RankBasedExperience({'size': 30}) # replay_memory = proportional.PropotionalExperience({'size': 100, 'batch_size': 10}) data_collector = Replay.Replay(replay_memory, env, pi, [advantage_estimation.ReplayMemoryQReturn(1, dqn)], [dqn]) ### 3. define data collection # data_collector = Batch(env, pi, [advantage_estimation.nstep_q_return(1, dqn)], [dqn]) ### 4. start training config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) # assign actor to pi_old pi.sync_weights() # TODO: automate this for policies with target network start_time = time.time() for i in range(100): # collect data data_collector.collect(nums=50) # print current return print('Epoch {}:'.format(i)) data_collector.statistics() # update network for _ in range(num_batches): feed_dict = data_collector.next_batch(batch_size, tf.train.global_step(sess, global_step)) sess.run(train_op, feed_dict=feed_dict) print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))