import torch import torch.nn.functional as F from tianshou.data import Batch from tianshou.policy import BasePolicy class ImitationPolicy(BasePolicy): """Implementation of vanilla imitation learning (for continuous action space). :param torch.nn.Module model: a model following the rules in :class:`~tianshou.policy.BasePolicy`. (s -> a) :param torch.optim.Optimizer optim: a torch.optim for optimizing the model. .. seealso:: Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed explanation. """ def __init__(self, model, optim): super().__init__() self.model = model self.optim = optim def forward(self, batch, state=None): a, h = self.model(batch.obs, state=state, info=batch.info) return Batch(act=a, state=h) def learn(self, batch, **kwargs): self.optim.zero_grad() a = self(batch).act a_ = torch.tensor(batch.act, dtype=torch.float, device=a.device) loss = F.mse_loss(a, a_) loss.backward() self.optim.step() return {'loss': loss.item()}