#!/usr/bin/env python3 import os from jsonargparse import CLI from examples.atari.atari_network import ( ActorFactoryAtariDQN, IntermediateModuleFactoryAtariDQNFeatures, ) from examples.atari.atari_wrapper import AtariEnvFactory, AtariStopCallback from tianshou.highlevel.config import SamplingConfig from tianshou.highlevel.experiment import ( DiscreteSACExperimentBuilder, ExperimentConfig, ) from tianshou.highlevel.params.alpha import AutoAlphaFactoryDefault from tianshou.highlevel.params.policy_params import DiscreteSACParams from tianshou.highlevel.params.policy_wrapper import ( PolicyWrapperFactoryIntrinsicCuriosity, ) from tianshou.utils import logging from tianshou.utils.logging import datetime_tag def main( experiment_config: ExperimentConfig, task: str = "PongNoFrameskip-v4", scale_obs: int = 0, buffer_size: int = 100000, actor_lr: float = 1e-5, critic_lr: float = 1e-5, gamma: float = 0.99, n_step: int = 3, tau: float = 0.005, alpha: float = 0.05, auto_alpha: bool = False, alpha_lr: float = 3e-4, epoch: int = 100, step_per_epoch: int = 100000, step_per_collect: int = 10, update_per_step: float = 0.1, batch_size: int = 64, hidden_size: int = 512, training_num: int = 10, test_num: int = 10, frames_stack: int = 4, save_buffer_name: str | None = None, # TODO add support in high-level API? icm_lr_scale: float = 0.0, icm_reward_scale: float = 0.01, icm_forward_loss_weight: float = 0.2, ): log_name = os.path.join(task, "sac", str(experiment_config.seed), datetime_tag()) sampling_config = SamplingConfig( num_epochs=epoch, step_per_epoch=step_per_epoch, update_per_step=update_per_step, batch_size=batch_size, num_train_envs=training_num, num_test_envs=test_num, buffer_size=buffer_size, step_per_collect=step_per_collect, repeat_per_collect=None, replay_buffer_stack_num=frames_stack, replay_buffer_ignore_obs_next=True, replay_buffer_save_only_last_obs=True, ) env_factory = AtariEnvFactory(task, experiment_config.seed, frames_stack, scale=scale_obs) builder = ( DiscreteSACExperimentBuilder(env_factory, experiment_config, sampling_config) .with_sac_params( DiscreteSACParams( actor_lr=actor_lr, critic1_lr=critic_lr, critic2_lr=critic_lr, gamma=gamma, tau=tau, alpha=AutoAlphaFactoryDefault(lr=alpha_lr) if auto_alpha else alpha, estimation_step=n_step, ), ) .with_actor_factory(ActorFactoryAtariDQN(hidden_size, scale_obs=False, features_only=True)) .with_common_critic_factory_use_actor() .with_trainer_stop_callback(AtariStopCallback(task)) ) if icm_lr_scale > 0: builder.with_policy_wrapper_factory( PolicyWrapperFactoryIntrinsicCuriosity( IntermediateModuleFactoryAtariDQNFeatures(), [hidden_size], actor_lr, icm_lr_scale, icm_reward_scale, icm_forward_loss_weight, ), ) experiment = builder.build() experiment.run(log_name) if __name__ == "__main__": logging.run_main(lambda: CLI(main))