import torch from torch import nn import torch.nn.functional as F from tianshou.data import Batch from tianshou.policy import PGPolicy class A2CPolicy(PGPolicy): """docstring for A2CPolicy""" def __init__(self, actor, critic, optim, dist_fn=torch.distributions.Categorical, discount_factor=0.99, vf_coef=.5, ent_coef=.01, max_grad_norm=None): super().__init__(None, optim, dist_fn, discount_factor) self.actor = actor self.critic = critic self._w_vf = vf_coef self._w_ent = ent_coef self._grad_norm = max_grad_norm def __call__(self, batch, state=None): logits, h = self.actor(batch.obs, state=state, info=batch.info) dist = self.dist_fn(logits) act = dist.sample() return Batch(logits=logits, act=act, state=h, dist=dist) def learn(self, batch, batch_size=None, repeat=1): losses, actor_losses, vf_losses, ent_losses = [], [], [], [] for _ in range(repeat): for b in batch.split(batch_size): self.optim.zero_grad() result = self(b) dist = result.dist v = self.critic(b.obs) a = torch.tensor(b.act, device=dist.logits.device) r = torch.tensor(b.returns, device=dist.logits.device) a_loss = -(dist.log_prob(a) * (r - v).detach()).mean() vf_loss = F.mse_loss(r[:, None], v) ent_loss = dist.entropy().mean() loss = a_loss + self._w_vf * vf_loss - self._w_ent * ent_loss loss.backward() if self._grad_norm: nn.utils.clip_grad_norm_( self.model.parameters(), max_norm=self._grad_norm) self.optim.step() actor_losses.append(a_loss.detach().cpu().numpy()) vf_losses.append(vf_loss.detach().cpu().numpy()) ent_losses.append(ent_loss.detach().cpu().numpy()) losses.append(loss.detach().cpu().numpy()) return { 'loss': losses, 'loss/actor': actor_losses, 'loss/vf': vf_losses, 'loss/ent': ent_losses, }