import numpy as np from collections import deque from abc import ABC, abstractmethod from multiprocessing import Process, Pipe try: import ray except ImportError: pass from tianshou.utils import CloudpickleWrapper class EnvWrapper(object): def __init__(self, env): self.env = env def step(self, action): return self.env.step(action) def reset(self): return self.env.reset() def seed(self, seed=None): if hasattr(self.env, 'seed'): self.env.seed(seed) def render(self): if hasattr(self.env, 'render'): self.env.render() def close(self): self.env.close() class FrameStack(EnvWrapper): def __init__(self, env, stack_num): """Stack last k frames.""" super().__init__(env) self.stack_num = stack_num self._frames = deque([], maxlen=stack_num) def step(self, action): obs, reward, done, info = self.env.step(action) self._frames.append(obs) return self._get_obs(), reward, done, info def reset(self): obs = self.env.reset() for _ in range(self.stack_num): self._frames.append(obs) return self._get_obs() def _get_obs(self): try: return np.concatenate(self._frames, axis=-1) except ValueError: return np.stack(self._frames, axis=-1) class BaseVectorEnv(ABC): def __init__(self, env_fns, reset_after_done): self._env_fns = env_fns self.env_num = len(env_fns) self._reset_after_done = reset_after_done self._done = np.zeros(self.env_num) def is_reset_after_done(self): return self._reset_after_done def __len__(self): return self.env_num @abstractmethod def reset(self): pass @abstractmethod def step(self, action): pass @abstractmethod def seed(self, seed=None): pass @abstractmethod def render(self): pass @abstractmethod def close(self): pass class VectorEnv(BaseVectorEnv): """docstring for VectorEnv""" def __init__(self, env_fns, reset_after_done=False): super().__init__(env_fns, reset_after_done) self.envs = [_() for _ in env_fns] def reset(self): self._done = np.zeros(self.env_num) self._obs = np.stack([e.reset() for e in self.envs]) return self._obs def step(self, action): assert len(action) == self.env_num result = [] for i, e in enumerate(self.envs): if not self.is_reset_after_done() and self._done[i]: result.append([ self._obs[i], self._rew[i], self._done[i], self._info[i]]) else: result.append(e.step(action[i])) self._obs, self._rew, self._done, self._info = zip(*result) if self.is_reset_after_done() and sum(self._done): self._obs = np.stack(self._obs) for i in np.where(self._done)[0]: self._obs[i] = self.envs[i].reset() return np.stack(self._obs), np.stack(self._rew),\ np.stack(self._done), np.stack(self._info) def seed(self, seed=None): if np.isscalar(seed): seed = [seed + _ for _ in range(self.env_num)] elif seed is None: seed = [seed] * self.env_num for e, s in zip(self.envs, seed): if hasattr(e, 'seed'): e.seed(s) def render(self): for e in self.envs: if hasattr(e, 'render'): e.render() def close(self): for e in self.envs: e.close() def worker(parent, p, env_fn_wrapper, reset_after_done): parent.close() env = env_fn_wrapper.data() done = False try: while True: cmd, data = p.recv() if cmd == 'step': if reset_after_done or not done: obs, rew, done, info = env.step(data) if reset_after_done and done: # s_ is useless when episode finishes obs = env.reset() p.send([obs, rew, done, info]) elif cmd == 'reset': done = False p.send(env.reset()) elif cmd == 'close': p.close() break elif cmd == 'render': p.send(env.render() if hasattr(env, 'render') else None) elif cmd == 'seed': p.send(env.seed(data) if hasattr(env, 'seed') else None) else: p.close() raise NotImplementedError except KeyboardInterrupt: p.close() class SubprocVectorEnv(BaseVectorEnv): """docstring for SubProcVectorEnv""" def __init__(self, env_fns, reset_after_done=False): super().__init__(env_fns, reset_after_done) self.closed = False self.parent_remote, self.child_remote = \ zip(*[Pipe() for _ in range(self.env_num)]) self.processes = [ Process(target=worker, args=( parent, child, CloudpickleWrapper(env_fn), reset_after_done), daemon=True) for (parent, child, env_fn) in zip( self.parent_remote, self.child_remote, env_fns) ] for p in self.processes: p.start() for c in self.child_remote: c.close() def step(self, action): assert len(action) == self.env_num for p, a in zip(self.parent_remote, action): p.send(['step', a]) result = [p.recv() for p in self.parent_remote] obs, rew, done, info = zip(*result) return np.stack(obs), np.stack(rew), np.stack(done), np.stack(info) def reset(self): for p in self.parent_remote: p.send(['reset', None]) return np.stack([p.recv() for p in self.parent_remote]) def seed(self, seed=None): if np.isscalar(seed): seed = [seed + _ for _ in range(self.env_num)] elif seed is None: seed = [seed] * self.env_num for p, s in zip(self.parent_remote, seed): p.send(['seed', s]) for p in self.parent_remote: p.recv() def render(self): for p in self.parent_remote: p.send(['render', None]) for p in self.parent_remote: p.recv() def close(self): if self.closed: return for p in self.parent_remote: p.send(['close', None]) self.closed = True for p in self.processes: p.join() class RayVectorEnv(BaseVectorEnv): """docstring for RayVectorEnv""" def __init__(self, env_fns, reset_after_done=False): super().__init__(env_fns, reset_after_done) try: if not ray.is_initialized(): ray.init() except NameError: raise ImportError( 'Please install ray to support VectorEnv: pip3 install ray -U') self.envs = [ ray.remote(EnvWrapper).options(num_cpus=0).remote(e()) for e in env_fns] def step(self, action): assert len(action) == self.env_num result_obj = [] for i, e in enumerate(self.envs): if not self.is_reset_after_done() and self._done[i]: result_obj.append(None) else: result_obj.append(e.step.remote(action[i])) result = [] for i, r in enumerate(result_obj): if r is None: result.append([ self._obs[i], self._rew[i], self._done[i], self._info[i]]) else: result.append(ray.get(r)) self._obs, self._rew, self._done, self._info = zip(*result) if self.is_reset_after_done() and sum(self._done): self._obs = np.stack(self._obs) index = np.where(self._done)[0] result_obj = [] for i in range(len(index)): result_obj.append(self.envs[index[i]].reset.remote()) for i in range(len(index)): self._obs[index[i]] = ray.get(result_obj[i]) return np.stack(self._obs), np.stack(self._rew),\ np.stack(self._done), np.stack(self._info) def reset(self): self._done = np.zeros(self.env_num) result_obj = [e.reset.remote() for e in self.envs] self._obs = np.stack([ray.get(r) for r in result_obj]) return self._obs def seed(self, seed=None): if not hasattr(self.envs[0], 'seed'): return if np.isscalar(seed): seed = [seed + _ for _ in range(self.env_num)] elif seed is None: seed = [seed] * self.env_num result_obj = [e.seed.remote(s) for e, s in zip(self.envs, seed)] for r in result_obj: ray.get(r) def render(self): if not hasattr(self.envs[0], 'render'): return result_obj = [e.render.remote() for e in self.envs] for r in result_obj: ray.get(r) def close(self): result_obj = [e.close.remote() for e in self.envs] for r in result_obj: ray.get(r)