#!/usr/bin/env python from __future__ import absolute_import import tensorflow as tf import gym import numpy as np import time import argparse import logging logging.basicConfig(level=logging.INFO) # our lib imports here! It's ok to append path in examples import sys sys.path.append('..') from tianshou.core import losses import tianshou.data.advantage_estimation as advantage_estimation import tianshou.core.policy as policy import tianshou.core.value_function.action_value as value_function import tianshou.core.opt as opt from tianshou.data.data_buffer.vanilla import VanillaReplayBuffer from tianshou.data.data_collector import DataCollector from tianshou.data.tester import test_policy_in_env if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--render", action="store_true", default=False) args = parser.parse_args() env = gym.make('Pendulum-v0') observation_dim = env.observation_space.shape action_dim = env.action_space.shape batch_size = 32 seed = 123 np.random.seed(seed) tf.set_random_seed(seed) ### 1. build network with pure tf observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim) action_ph = tf.placeholder(tf.float32, shape=(None,) + action_dim) def my_network(): net = tf.layers.dense(observation_ph, 16, activation=tf.nn.relu) net = tf.layers.dense(net, 16, activation=tf.nn.relu) net = tf.layers.dense(net, 16, activation=tf.nn.relu) action = tf.layers.dense(net, action_dim[0], activation=None) action_value_input = tf.concat([observation_ph, action_ph], axis=1) net = tf.layers.dense(action_value_input, 32, activation=tf.nn.relu) net = tf.layers.dense(net, 32, activation=tf.nn.relu) net = tf.layers.dense(net, 32, activation=tf.nn.relu) action_value = tf.layers.dense(net, 1, activation=None) return action, action_value ### 2. build policy, loss, optimizer actor = policy.Deterministic(my_network, observation_placeholder=observation_ph, weight_update=1e-3) critic = value_function.ActionValue(my_network, observation_placeholder=observation_ph, action_placeholder=action_ph, weight_update=1e-3) critic_loss = losses.value_mse(critic) critic_optimizer = tf.train.AdamOptimizer(1e-3) # clip by norm critic_grads, vars = zip(*critic_optimizer.compute_gradients(critic_loss, var_list=critic.trainable_variables)) critic_grads, _ = tf.clip_by_global_norm(critic_grads, 1.0) critic_train_op = critic_optimizer.apply_gradients(zip(critic_grads, vars)) dpg_grads_vars = opt.DPG(actor, critic) # check which action to use in dpg # clip by norm dpg_grads, vars = zip(*dpg_grads_vars) dpg_grads, _ = tf.clip_by_global_norm(dpg_grads, 1.0) actor_optimizer = tf.train.AdamOptimizer(1e-3) actor_train_op = actor_optimizer.apply_gradients(zip(dpg_grads, vars)) ### 3. define data collection data_buffer = VanillaReplayBuffer(capacity=100000, nstep=1) process_functions = [advantage_estimation.ddpg_return(actor, critic)] data_collector = DataCollector( env=env, policy=actor, data_buffer=data_buffer, process_functions=process_functions, managed_networks=[actor, critic] ) ### 4. start training config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) # assign actor to pi_old actor.sync_weights() critic.sync_weights() start_time = time.time() data_collector.collect(num_timesteps=100) # warm-up for i in range(int(1e8)): # collect data data_collector.collect(num_timesteps=1, episode_cutoff=200) # update network feed_dict = data_collector.next_batch(batch_size) sess.run(critic_train_op, feed_dict=feed_dict) sess.run(actor_train_op, feed_dict=feed_dict) # update target networks actor.sync_weights() critic.sync_weights() # test every 1000 training steps if i % 1000 == 0: print('Step {}, elapsed time: {:.1f} min'.format(i, (time.time() - start_time) / 60)) test_policy_in_env(actor, env, num_episodes=5, episode_cutoff=200)