import argparse import os import pprint import gymnasium as gym import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from tianshou.data import Collector, VectorReplayBuffer from tianshou.env import DummyVectorEnv from tianshou.policy import DQNPolicy from tianshou.policy.base import BasePolicy from tianshou.trainer import OffpolicyTrainer from tianshou.utils import TensorboardLogger from tianshou.utils.net.common import Net from tianshou.utils.space_info import SpaceInfo def get_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="Acrobot-v1") parser.add_argument("--seed", type=int, default=0) parser.add_argument("--eps-test", type=float, default=0.05) parser.add_argument("--eps-train", type=float, default=0.5) parser.add_argument("--buffer-size", type=int, default=20000) parser.add_argument("--lr", type=float, default=1e-3) parser.add_argument("--gamma", type=float, default=0.95) parser.add_argument("--n-step", type=int, default=3) parser.add_argument("--target-update-freq", type=int, default=320) parser.add_argument("--epoch", type=int, default=10) parser.add_argument("--step-per-epoch", type=int, default=100000) parser.add_argument("--step-per-collect", type=int, default=100) parser.add_argument("--update-per-step", type=float, default=0.01) parser.add_argument("--batch-size", type=int, default=64) parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128]) parser.add_argument("--dueling-q-hidden-sizes", type=int, nargs="*", default=[128, 128]) parser.add_argument("--dueling-v-hidden-sizes", type=int, nargs="*", default=[128, 128]) parser.add_argument("--training-num", type=int, default=10) parser.add_argument("--test-num", type=int, default=10) parser.add_argument("--logdir", type=str, default="log") parser.add_argument("--render", type=float, default=0.0) parser.add_argument( "--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", ) return parser.parse_args() def test_dqn(args: argparse.Namespace = get_args()) -> None: env = gym.make(args.task) assert isinstance(env.action_space, gym.spaces.Discrete) space_info = SpaceInfo.from_env(env) args.state_shape = space_info.observation_info.obs_shape args.action_shape = space_info.action_info.action_shape # train_envs = gym.make(args.task) # you can also use tianshou.env.SubprocVectorEnv train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model Q_param = {"hidden_sizes": args.dueling_q_hidden_sizes} V_param = {"hidden_sizes": args.dueling_v_hidden_sizes} net = Net( state_shape=args.state_shape, action_shape=args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device, dueling_param=(Q_param, V_param), ).to(args.device) optim = torch.optim.Adam(net.parameters(), lr=args.lr) policy: DQNPolicy = DQNPolicy( model=net, optim=optim, action_space=env.action_space, discount_factor=args.gamma, estimation_step=args.n_step, target_update_freq=args.target_update_freq, ) # collector train_collector = Collector( policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs)), exploration_noise=True, ) test_collector = Collector(policy, test_envs, exploration_noise=True) # policy.set_eps(1) train_collector.collect(n_step=args.batch_size * args.training_num) # log log_path = os.path.join(args.logdir, args.task, "dqn") writer = SummaryWriter(log_path) logger = TensorboardLogger(writer) def save_best_fn(policy: BasePolicy) -> None: torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) def stop_fn(mean_rewards: float) -> bool: if env.spec: if not env.spec.reward_threshold: return False else: return mean_rewards >= env.spec.reward_threshold return False def train_fn(epoch: int, env_step: int) -> None: if env_step <= 100000: policy.set_eps(args.eps_train) elif env_step <= 500000: eps = args.eps_train - (env_step - 100000) / 400000 * (0.5 * args.eps_train) policy.set_eps(eps) else: policy.set_eps(0.5 * args.eps_train) def test_fn(epoch: int, env_step: int | None) -> None: policy.set_eps(args.eps_test) # trainer result = OffpolicyTrainer( policy=policy, train_collector=train_collector, test_collector=test_collector, max_epoch=args.epoch, step_per_epoch=args.step_per_epoch, step_per_collect=args.step_per_collect, episode_per_test=args.test_num, batch_size=args.batch_size, update_per_step=args.update_per_step, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger, ).run() assert stop_fn(result.best_reward) if __name__ == "__main__": pprint.pprint(result) # Let's watch its performance! policy.eval() policy.set_eps(args.eps_test) test_envs.seed(args.seed) test_collector.reset() collector_stats = test_collector.collect(n_episode=args.test_num, render=args.render) print(collector_stats) if __name__ == "__main__": test_dqn(get_args())