import torch import numpy as np from copy import deepcopy import torch.nn.functional as F from tianshou.data import Batch from tianshou.policy import BasePolicy # from tianshou.exploration import OUNoise class DDPGPolicy(BasePolicy): """docstring for DDPGPolicy""" def __init__(self, actor, actor_optim, critic, critic_optim, tau=0.005, gamma=0.99, exploration_noise=0.1, action_range=None, reward_normalization=False, ignore_done=False): super().__init__() if actor is not None: self.actor, self.actor_old = actor, deepcopy(actor) self.actor_old.eval() self.actor_optim = actor_optim if critic is not None: self.critic, self.critic_old = critic, deepcopy(critic) self.critic_old.eval() self.critic_optim = critic_optim assert 0 < tau <= 1, 'tau should in (0, 1]' self._tau = tau assert 0 < gamma <= 1, 'gamma should in (0, 1]' self._gamma = gamma assert 0 <= exploration_noise, 'noise should not be negative' self._eps = exploration_noise assert action_range is not None self._range = action_range self._action_bias = (action_range[0] + action_range[1]) / 2 self._action_scale = (action_range[1] - action_range[0]) / 2 # it is only a little difference to use rand_normal # self.noise = OUNoise() self._rm_done = ignore_done self._rew_norm = reward_normalization self.__eps = np.finfo(np.float32).eps.item() def set_eps(self, eps): self._eps = eps def train(self): self.training = True self.actor.train() self.critic.train() def eval(self): self.training = False self.actor.eval() self.critic.eval() def sync_weight(self): for o, n in zip(self.actor_old.parameters(), self.actor.parameters()): o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau) for o, n in zip( self.critic_old.parameters(), self.critic.parameters()): o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau) def process_fn(self, batch, buffer, indice): if self._rew_norm: bfr = buffer.rew[:len(buffer)] mean, std = bfr.mean(), bfr.std() if std > self.__eps: batch.rew = (batch.rew - mean) / std if self._rm_done: batch.done = batch.done * 0. return batch def __call__(self, batch, state=None, model='actor', input='obs', eps=None): model = getattr(self, model) obs = getattr(batch, input) logits, h = model(obs, state=state, info=batch.info) logits += self._action_bias if eps is None: eps = self._eps if eps > 0: # noise = np.random.normal(0, eps, size=logits.shape) # logits += torch.tensor(noise, device=logits.device) # noise = self.noise(logits.shape, eps) logits += torch.randn( size=logits.shape, device=logits.device) * eps logits = logits.clamp(self._range[0], self._range[1]) return Batch(act=logits, state=h) def learn(self, batch, batch_size=None, repeat=1): target_q = self.critic_old(batch.obs_next, self( batch, model='actor_old', input='obs_next', eps=0).act) dev = target_q.device rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)[:, None] done = torch.tensor(batch.done, dtype=torch.float, device=dev)[:, None] target_q = (rew + (1. - done) * self._gamma * target_q).detach() current_q = self.critic(batch.obs, batch.act) critic_loss = F.mse_loss(current_q, target_q) self.critic_optim.zero_grad() critic_loss.backward() self.critic_optim.step() actor_loss = -self.critic(batch.obs, self(batch, eps=0).act).mean() self.actor_optim.zero_grad() actor_loss.backward() self.actor_optim.step() self.sync_weight() return { 'loss/actor': actor_loss.detach().cpu().numpy(), 'loss/critic': critic_loss.detach().cpu().numpy(), }