import os import gym import torch import pprint import argparse import numpy as np from torch import nn from torch.utils.tensorboard import SummaryWriter from torch.distributions import Independent, Normal from tianshou.policy import TRPOPolicy from tianshou.utils import BasicLogger from tianshou.env import DummyVectorEnv from tianshou.utils.net.common import Net from tianshou.trainer import onpolicy_trainer from tianshou.data import Collector, VectorReplayBuffer from tianshou.utils.net.continuous import ActorProb, Critic def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='Pendulum-v0') parser.add_argument('--seed', type=int, default=1) parser.add_argument('--buffer-size', type=int, default=50000) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--gamma', type=float, default=0.95) parser.add_argument('--epoch', type=int, default=5) parser.add_argument('--step-per-epoch', type=int, default=50000) parser.add_argument('--step-per-collect', type=int, default=2048) parser.add_argument('--repeat-per-collect', type=int, default=2) # theoretically it should be 1 parser.add_argument('--batch-size', type=int, default=99999) parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64]) parser.add_argument('--training-num', type=int, default=16) parser.add_argument('--test-num', type=int, default=10) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') # trpo special parser.add_argument('--gae-lambda', type=float, default=0.95) parser.add_argument('--rew-norm', type=int, default=1) parser.add_argument('--norm-adv', type=int, default=1) parser.add_argument('--optim-critic-iters', type=int, default=5) parser.add_argument('--max-kl', type=float, default=0.005) parser.add_argument('--backtrack-coeff', type=float, default=0.8) parser.add_argument('--max-backtracks', type=int, default=10) args = parser.parse_known_args()[0] return args def test_trpo(args=get_args()): env = gym.make(args.task) if args.task == 'Pendulum-v0': env.spec.reward_threshold = -250 args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] # you can also use tianshou.env.SubprocVectorEnv # train_envs = gym.make(args.task) train_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, activation=nn.Tanh, device=args.device) actor = ActorProb(net, args.action_shape, max_action=args.max_action, unbounded=True, device=args.device).to(args.device) critic = Critic(Net( args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device, activation=nn.Tanh), device=args.device).to(args.device) # orthogonal initialization for m in list(actor.modules()) + list(critic.modules()): if isinstance(m, torch.nn.Linear): torch.nn.init.orthogonal_(m.weight) torch.nn.init.zeros_(m.bias) optim = torch.optim.Adam(critic.parameters(), lr=args.lr) # replace DiagGuassian with Independent(Normal) which is equivalent # pass *logits to be consistent with policy.forward def dist(*logits): return Independent(Normal(*logits), 1) policy = TRPOPolicy( actor, critic, optim, dist, discount_factor=args.gamma, reward_normalization=args.rew_norm, advantage_normalization=args.norm_adv, gae_lambda=args.gae_lambda, action_space=env.action_space, optim_critic_iters=args.optim_critic_iters, max_kl=args.max_kl, backtrack_coeff=args.backtrack_coeff, max_backtracks=args.max_backtracks) # collector train_collector = Collector( policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs))) test_collector = Collector(policy, test_envs) # log log_path = os.path.join(args.logdir, args.task, 'trpo') writer = SummaryWriter(log_path) logger = BasicLogger(writer) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= env.spec.reward_threshold # trainer result = onpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.repeat_per_collect, args.test_num, args.batch_size, step_per_collect=args.step_per_collect, stop_fn=stop_fn, save_fn=save_fn, logger=logger) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) rews, lens = result["rews"], result["lens"] print(f"Final reward: {rews.mean()}, length: {lens.mean()}") if __name__ == '__main__': test_trpo()