import time import tqdm import warnings import numpy as np from collections import defaultdict from typing import Dict, Union, Callable, Optional from tianshou.policy import BasePolicy from tianshou.utils import tqdm_config, MovAvg, BaseLogger, LazyLogger from tianshou.data import Collector, ReplayBuffer from tianshou.trainer import test_episode, gather_info def offline_trainer( policy: BasePolicy, buffer: ReplayBuffer, test_collector: Collector, max_epoch: int, update_per_epoch: int, episode_per_test: int, batch_size: int, test_fn: Optional[Callable[[int, Optional[int]], None]] = None, stop_fn: Optional[Callable[[float], bool]] = None, save_fn: Optional[Callable[[BasePolicy], None]] = None, save_checkpoint_fn: Optional[Callable[[int, int, int], None]] = None, resume_from_log: bool = False, reward_metric: Optional[Callable[[np.ndarray], np.ndarray]] = None, logger: BaseLogger = LazyLogger(), verbose: bool = True, ) -> Dict[str, Union[float, str]]: """A wrapper for offline trainer procedure. The "step" in offline trainer means a gradient step. :param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class. :param Collector test_collector: the collector used for testing. :param int max_epoch: the maximum number of epochs for training. The training process might be finished before reaching ``max_epoch`` if ``stop_fn`` is set. :param int update_per_epoch: the number of policy network updates, so-called gradient steps, per epoch. :param episode_per_test: the number of episodes for one policy evaluation. :param int batch_size: the batch size of sample data, which is going to feed in the policy network. :param function test_fn: a hook called at the beginning of testing in each epoch. It can be used to perform custom additional operations, with the signature ``f( num_epoch: int, step_idx: int) -> None``. :param function save_fn: a hook called when the undiscounted average mean reward in evaluation phase gets better, with the signature ``f(policy: BasePolicy) -> None``. :param function save_checkpoint_fn: a function to save training process, with the signature ``f(epoch: int, env_step: int, gradient_step: int) -> None``; you can save whatever you want. Because offline-RL doesn't have env_step, the env_step is always 0 here. :param bool resume_from_log: resume gradient_step and other metadata from existing tensorboard log. Default to False. :param function stop_fn: a function with signature ``f(mean_rewards: float) -> bool``, receives the average undiscounted returns of the testing result, returns a boolean which indicates whether reaching the goal. :param function reward_metric: a function with signature ``f(rewards: np.ndarray with shape (num_episode, agent_num)) -> np.ndarray with shape (num_episode,)``, used in multi-agent RL. We need to return a single scalar for each episode's result to monitor training in the multi-agent RL setting. This function specifies what is the desired metric, e.g., the reward of agent 1 or the average reward over all agents. :param BaseLogger logger: A logger that logs statistics during updating/testing. Default to a logger that doesn't log anything. :param bool verbose: whether to print the information. Default to True. :return: See :func:`~tianshou.trainer.gather_info`. """ if save_fn: warnings.warn("Please consider using save_checkpoint_fn instead of save_fn.") start_epoch, gradient_step = 0, 0 if resume_from_log: start_epoch, _, gradient_step = logger.restore_data() stat: Dict[str, MovAvg] = defaultdict(MovAvg) start_time = time.time() test_collector.reset_stat() test_result = test_episode(policy, test_collector, test_fn, start_epoch, episode_per_test, logger, gradient_step, reward_metric) best_epoch = start_epoch best_reward, best_reward_std = test_result["rew"], test_result["rew_std"] for epoch in range(1 + start_epoch, 1 + max_epoch): policy.train() with tqdm.trange( update_per_epoch, desc=f"Epoch #{epoch}", **tqdm_config ) as t: for i in t: gradient_step += 1 losses = policy.update(batch_size, buffer) data = {"gradient_step": str(gradient_step)} for k in losses.keys(): stat[k].add(losses[k]) losses[k] = stat[k].get() data[k] = f"{losses[k]:.3f}" logger.log_update_data(losses, gradient_step) t.set_postfix(**data) # test test_result = test_episode( policy, test_collector, test_fn, epoch, episode_per_test, logger, gradient_step, reward_metric) rew, rew_std = test_result["rew"], test_result["rew_std"] if best_epoch < 0 or best_reward < rew: best_epoch, best_reward, best_reward_std = epoch, rew, rew_std if save_fn: save_fn(policy) logger.save_data(epoch, 0, gradient_step, save_checkpoint_fn) if verbose: print(f"Epoch #{epoch}: test_reward: {rew:.6f} ± {rew_std:.6f}, best_rew" f"ard: {best_reward:.6f} ± {best_reward_std:.6f} in #{best_epoch}") if stop_fn and stop_fn(best_reward): break return gather_info(start_time, None, test_collector, best_reward, best_reward_std)