import os import gym import torch import pprint import argparse import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.policy import DQNPolicy from tianshou.utils.net.common import Net from tianshou.trainer import offpolicy_trainer from tianshou.data import Collector, ReplayBuffer from tianshou.env import DummyVectorEnv, SubprocVectorEnv def get_args(): parser = argparse.ArgumentParser() # the parameters are found by Optuna parser.add_argument('--task', type=str, default='LunarLander-v2') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--eps-test', type=float, default=0.01) parser.add_argument('--eps-train', type=float, default=0.73) parser.add_argument('--buffer-size', type=int, default=100000) parser.add_argument('--lr', type=float, default=0.013) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--n-step', type=int, default=4) parser.add_argument('--target-update-freq', type=int, default=500) parser.add_argument('--epoch', type=int, default=10) parser.add_argument('--step-per-epoch', type=int, default=5000) parser.add_argument('--collect-per-step', type=int, default=16) parser.add_argument('--batch-size', type=int, default=128) parser.add_argument('--layer-num', type=int, default=1) parser.add_argument('--training-num', type=int, default=10) parser.add_argument('--test-num', type=int, default=100) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') return parser.parse_args() def test_dqn(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # train_envs = gym.make(args.task) # you can also use tianshou.env.SubprocVectorEnv train_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = SubprocVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.layer_num, args.state_shape, args.action_shape, args.device, dueling=(2, 2)).to(args.device) optim = torch.optim.Adam(net.parameters(), lr=args.lr) policy = DQNPolicy( net, optim, args.gamma, args.n_step, target_update_freq=args.target_update_freq) # collector train_collector = Collector( policy, train_envs, ReplayBuffer(args.buffer_size)) test_collector = Collector(policy, test_envs) # policy.set_eps(1) train_collector.collect(n_step=args.batch_size) # log log_path = os.path.join(args.logdir, args.task, 'dqn') writer = SummaryWriter(log_path) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= env.spec.reward_threshold def train_fn(epoch, env_step): # exp decay eps = max(args.eps_train * (1 - 5e-6) ** env_step, args.eps_test) policy.set_eps(eps) def test_fn(epoch, env_step): policy.set_eps(args.eps_test) # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_fn=save_fn, writer=writer, test_in_train=False) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! policy.eval() policy.set_eps(args.eps_test) test_envs.seed(args.seed) test_collector.reset() result = test_collector.collect(n_episode=[1] * args.test_num, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}') if __name__ == '__main__': test_dqn(get_args())