#!/usr/bin/env python from __future__ import absolute_import import tensorflow as tf import time import numpy as np import gym import logging logging.basicConfig(level=logging.INFO) # our lib imports here! It's ok to append path in examples import sys sys.path.append('..') from tianshou.core import losses import tianshou.data.advantage_estimation as advantage_estimation import tianshou.core.policy.distributional as policy import tianshou.core.value_function.state_value as value_function from tianshou.data.data_buffer.batch_set import BatchSet from tianshou.data.data_collector import DataCollector if __name__ == '__main__': env = gym.make('CartPole-v0') observation_dim = env.observation_space.shape action_dim = env.action_space.n clip_param = 0.2 num_batches = 10 batch_size = 512 seed = 0 np.random.seed(seed) tf.set_random_seed(seed) ### 1. build network with pure tf observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim) def my_network(): # placeholders defined in this function would be very difficult to manage net = tf.layers.dense(observation_ph, 64, activation=tf.nn.tanh) net = tf.layers.dense(net, 64, activation=tf.nn.tanh) action_logits = tf.layers.dense(net, action_dim, activation=None) action_dist = tf.distributions.Categorical(logits=action_logits) value = tf.layers.dense(net, 1, activation=None) return action_dist, value ### 2. build policy, critic, loss, optimizer actor = policy.Distributional(my_network, observation_placeholder=observation_ph) # no target network critic = value_function.StateValue(my_network, observation_placeholder=observation_ph) # no target network actor_loss = losses.REINFORCE(actor) critic_loss = losses.value_mse(critic) total_loss = actor_loss + 1e-2 * critic_loss optimizer = tf.train.AdamOptimizer(1e-4) # this hack would be unnecessary if we have a `SharedPolicyValue` class, or hack the trainable_variables management var_list = list(actor.trainable_variables | critic.trainable_variables) train_op = optimizer.minimize(total_loss, var_list=var_list) ### 3. define data collection data_buffer = BatchSet() data_collector = DataCollector( env=env, policy=actor, data_buffer=data_buffer, process_functions=[advantage_estimation.nstep_return(n=3, value_function=critic, return_advantage=True)], managed_networks=[actor, critic], ) ### 4. start training config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) start_time = time.time() for i in range(1000): # collect data data_collector.collect(num_episodes=50) # print current return print('Epoch {}:'.format(i)) data_buffer.statistics() # update network for _ in range(num_batches): feed_dict = data_collector.next_batch(batch_size) sess.run(train_op, feed_dict=feed_dict) print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))