import argparse import os from copy import deepcopy from functools import partial from typing import Optional, Tuple import gym import gymnasium import numpy as np import torch from pettingzoo.classic import tictactoe_v3 from torch.utils.tensorboard import SummaryWriter from tianshou.data import Collector, VectorReplayBuffer from tianshou.env import DummyVectorEnv from tianshou.env.pettingzoo_env import PettingZooEnv from tianshou.policy import ( BasePolicy, DQNPolicy, MultiAgentPolicyManager, RandomPolicy, ) from tianshou.trainer import offpolicy_trainer from tianshou.utils import TensorboardLogger from tianshou.utils.net.common import Net def get_env(render_mode: Optional[str] = None): return PettingZooEnv(tictactoe_v3.env(render_mode=render_mode)) def get_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser() parser.add_argument('--seed', type=int, default=1626) parser.add_argument('--eps-test', type=float, default=0.05) parser.add_argument('--eps-train', type=float, default=0.1) parser.add_argument('--buffer-size', type=int, default=20000) parser.add_argument('--lr', type=float, default=1e-4) parser.add_argument( '--gamma', type=float, default=0.9, help='a smaller gamma favors earlier win' ) parser.add_argument('--n-step', type=int, default=3) parser.add_argument('--target-update-freq', type=int, default=320) parser.add_argument('--epoch', type=int, default=50) parser.add_argument('--step-per-epoch', type=int, default=1000) parser.add_argument('--step-per-collect', type=int, default=10) parser.add_argument('--update-per-step', type=float, default=0.1) parser.add_argument('--batch-size', type=int, default=64) parser.add_argument( '--hidden-sizes', type=int, nargs='*', default=[128, 128, 128, 128] ) parser.add_argument('--training-num', type=int, default=10) parser.add_argument('--test-num', type=int, default=10) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.1) parser.add_argument( '--win-rate', type=float, default=0.6, help='the expected winning rate: Optimal policy can get 0.7' ) parser.add_argument( '--watch', default=False, action='store_true', help='no training, ' 'watch the play of pre-trained models' ) parser.add_argument( '--agent-id', type=int, default=2, help='the learned agent plays as the' ' agent_id-th player. Choices are 1 and 2.' ) parser.add_argument( '--resume-path', type=str, default='', help='the path of agent pth file ' 'for resuming from a pre-trained agent' ) parser.add_argument( '--opponent-path', type=str, default='', help='the path of opponent agent pth file ' 'for resuming from a pre-trained agent' ) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu' ) return parser def get_args() -> argparse.Namespace: parser = get_parser() return parser.parse_known_args()[0] def get_agents( args: argparse.Namespace = get_args(), agent_learn: Optional[BasePolicy] = None, agent_opponent: Optional[BasePolicy] = None, optim: Optional[torch.optim.Optimizer] = None, ) -> Tuple[BasePolicy, torch.optim.Optimizer, list]: env = get_env() observation_space = env.observation_space['observation'] if isinstance( env.observation_space, (gym.spaces.Dict, gymnasium.spaces.Dict) ) else env.observation_space args.state_shape = observation_space.shape or observation_space.n args.action_shape = env.action_space.shape or env.action_space.n if agent_learn is None: # model net = Net( args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device ).to(args.device) if optim is None: optim = torch.optim.Adam(net.parameters(), lr=args.lr) agent_learn = DQNPolicy( net, optim, args.gamma, args.n_step, target_update_freq=args.target_update_freq ) if args.resume_path: agent_learn.load_state_dict(torch.load(args.resume_path)) if agent_opponent is None: if args.opponent_path: agent_opponent = deepcopy(agent_learn) agent_opponent.load_state_dict(torch.load(args.opponent_path)) else: agent_opponent = RandomPolicy() if args.agent_id == 1: agents = [agent_learn, agent_opponent] else: agents = [agent_opponent, agent_learn] policy = MultiAgentPolicyManager(agents, env) return policy, optim, env.agents def train_agent( args: argparse.Namespace = get_args(), agent_learn: Optional[BasePolicy] = None, agent_opponent: Optional[BasePolicy] = None, optim: Optional[torch.optim.Optimizer] = None, ) -> Tuple[dict, BasePolicy]: train_envs = DummyVectorEnv([get_env for _ in range(args.training_num)]) test_envs = DummyVectorEnv([get_env for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) policy, optim, agents = get_agents( args, agent_learn=agent_learn, agent_opponent=agent_opponent, optim=optim ) # collector train_collector = Collector( policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs)), exploration_noise=True ) test_collector = Collector(policy, test_envs, exploration_noise=True) # policy.set_eps(1) train_collector.collect(n_step=args.batch_size * args.training_num) # log log_path = os.path.join(args.logdir, 'tic_tac_toe', 'dqn') writer = SummaryWriter(log_path) writer.add_text("args", str(args)) logger = TensorboardLogger(writer) def save_best_fn(policy): if hasattr(args, 'model_save_path'): model_save_path = args.model_save_path else: model_save_path = os.path.join( args.logdir, 'tic_tac_toe', 'dqn', 'policy.pth' ) torch.save( policy.policies[agents[args.agent_id - 1]].state_dict(), model_save_path ) def stop_fn(mean_rewards): return mean_rewards >= args.win_rate def train_fn(epoch, env_step): policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_train) def test_fn(epoch, env_step): policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_test) def reward_metric(rews): return rews[:, args.agent_id - 1] # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_best_fn=save_best_fn, update_per_step=args.update_per_step, logger=logger, test_in_train=False, reward_metric=reward_metric ) return result, policy.policies[agents[args.agent_id - 1]] def watch( args: argparse.Namespace = get_args(), agent_learn: Optional[BasePolicy] = None, agent_opponent: Optional[BasePolicy] = None, ) -> None: env = DummyVectorEnv([partial(get_env, render_mode="human")]) policy, optim, agents = get_agents( args, agent_learn=agent_learn, agent_opponent=agent_opponent ) policy.eval() policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_test) collector = Collector(policy, env, exploration_noise=True) result = collector.collect(n_episode=1, render=args.render) rews, lens = result["rews"], result["lens"] print(f"Final reward: {rews[:, args.agent_id - 1].mean()}, length: {lens.mean()}")