import gym import numpy as np from abc import ABC, abstractmethod from typing import List, Tuple, Optional, Callable, Any class EnvWorker(ABC): """An abstract worker for an environment.""" def __init__(self, env_fn: Callable[[], gym.Env]) -> None: self._env_fn = env_fn self.is_closed = False self.result = (None, None, None, None) @abstractmethod def __getattr__(self, key: str) -> Any: pass @abstractmethod def reset(self) -> Any: pass @abstractmethod def send_action(self, action: np.ndarray) -> None: pass def get_result(self) -> Tuple[ np.ndarray, np.ndarray, np.ndarray, np.ndarray]: return self.result def step(self, action: np.ndarray ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """``send_action`` and ``get_result`` are coupled in sync simulation, so typically users only call ``step`` function. But they can be called separately in async simulation, i.e. someone calls ``send_action`` first, and calls ``get_result`` later. """ self.send_action(action) return self.get_result() @staticmethod def wait(workers: List['EnvWorker'], wait_num: int, timeout: Optional[float] = None) -> List['EnvWorker']: """Given a list of workers, return those ready ones.""" raise NotImplementedError @abstractmethod def seed(self, seed: Optional[int] = None) -> List[int]: pass @abstractmethod def render(self, **kwargs) -> Any: """Renders the environment.""" pass @abstractmethod def close_env(self) -> None: pass def close(self) -> None: if self.is_closed: return None self.is_closed = True self.close_env()