from typing import Any, Callable, List, Optional import gym import numpy as np from tianshou.env.worker import EnvWorker class DummyEnvWorker(EnvWorker): """Dummy worker used in sequential vector environments.""" def __init__(self, env_fn: Callable[[], gym.Env]) -> None: self.env = env_fn() super().__init__(env_fn) def get_env_attr(self, key: str) -> Any: return getattr(self.env, key) def set_env_attr(self, key: str, value: Any) -> None: setattr(self.env, key, value) def reset(self) -> Any: return self.env.reset() @staticmethod def wait( # type: ignore workers: List["DummyEnvWorker"], wait_num: int, timeout: Optional[float] = None ) -> List["DummyEnvWorker"]: # Sequential EnvWorker objects are always ready return workers def send(self, action: Optional[np.ndarray]) -> None: if action is None: self.result = self.env.reset() else: self.result = self.env.step(action) def seed(self, seed: Optional[int] = None) -> List[int]: super().seed(seed) return self.env.seed(seed) def render(self, **kwargs: Any) -> Any: return self.env.render(**kwargs) def close_env(self) -> None: self.env.close()