import ctypes import time from collections import OrderedDict from collections.abc import Callable from multiprocessing import Array, Pipe, connection from multiprocessing.context import Process from typing import Any import gymnasium as gym import numpy as np from tianshou.env.utils import CloudpickleWrapper, gym_new_venv_step_type from tianshou.env.worker import EnvWorker # mypy: disable-error-code="unused-ignore" _NP_TO_CT = { np.bool_: ctypes.c_bool, np.uint8: ctypes.c_uint8, np.uint16: ctypes.c_uint16, np.uint32: ctypes.c_uint32, np.uint64: ctypes.c_uint64, np.int8: ctypes.c_int8, np.int16: ctypes.c_int16, np.int32: ctypes.c_int32, np.int64: ctypes.c_int64, np.float32: ctypes.c_float, np.float64: ctypes.c_double, } class ShArray: """Wrapper of multiprocessing Array.""" def __init__(self, dtype: np.generic, shape: tuple[int]) -> None: self.arr = Array(_NP_TO_CT[dtype.type], int(np.prod(shape))) # type: ignore self.dtype = dtype self.shape = shape def save(self, ndarray: np.ndarray) -> None: assert isinstance(ndarray, np.ndarray) dst = self.arr.get_obj() dst_np = np.frombuffer(dst, dtype=self.dtype).reshape(self.shape) # type: ignore np.copyto(dst_np, ndarray) def get(self) -> np.ndarray: obj = self.arr.get_obj() return np.frombuffer(obj, dtype=self.dtype).reshape(self.shape) # type: ignore def _setup_buf(space: gym.Space) -> dict | tuple | ShArray: if isinstance(space, gym.spaces.Dict): assert isinstance(space.spaces, OrderedDict) return {k: _setup_buf(v) for k, v in space.spaces.items()} if isinstance(space, gym.spaces.Tuple): assert isinstance(space.spaces, tuple) return tuple([_setup_buf(t) for t in space.spaces]) return ShArray(space.dtype, space.shape) # type: ignore def _worker( parent: connection.Connection, p: connection.Connection, env_fn_wrapper: CloudpickleWrapper, obs_bufs: dict | tuple | ShArray | None = None, ) -> None: def _encode_obs( obs: dict | tuple | np.ndarray, buffer: dict | tuple | ShArray, ) -> None: if isinstance(obs, np.ndarray) and isinstance(buffer, ShArray): buffer.save(obs) elif isinstance(obs, tuple) and isinstance(buffer, tuple): for o, b in zip(obs, buffer, strict=True): _encode_obs(o, b) elif isinstance(obs, dict) and isinstance(buffer, dict): for k in obs: _encode_obs(obs[k], buffer[k]) parent.close() env = env_fn_wrapper.data() try: while True: try: cmd, data = p.recv() except EOFError: # the pipe has been closed p.close() break if cmd == "step": env_return = env.step(data) if obs_bufs is not None: _encode_obs(env_return[0], obs_bufs) env_return = (None, *env_return[1:]) p.send(env_return) elif cmd == "reset": obs, info = env.reset(**data) if obs_bufs is not None: _encode_obs(obs, obs_bufs) obs = None p.send((obs, info)) elif cmd == "close": p.send(env.close()) p.close() break elif cmd == "render": p.send(env.render(**data) if hasattr(env, "render") else None) elif cmd == "seed": if hasattr(env, "seed"): p.send(env.seed(data)) else: env.reset(seed=data) p.send(None) elif cmd == "getattr": p.send(getattr(env, data) if hasattr(env, data) else None) elif cmd == "setattr": setattr(env.unwrapped, data["key"], data["value"]) else: p.close() raise NotImplementedError except KeyboardInterrupt: p.close() class SubprocEnvWorker(EnvWorker): """Subprocess worker used in SubprocVectorEnv and ShmemVectorEnv.""" def __init__(self, env_fn: Callable[[], gym.Env], share_memory: bool = False) -> None: self.parent_remote, self.child_remote = Pipe() self.share_memory = share_memory self.buffer: dict | tuple | ShArray | None = None if self.share_memory: dummy = env_fn() obs_space = dummy.observation_space dummy.close() del dummy self.buffer = _setup_buf(obs_space) args = ( self.parent_remote, self.child_remote, CloudpickleWrapper(env_fn), self.buffer, ) self.process = Process(target=_worker, args=args, daemon=True) self.process.start() self.child_remote.close() super().__init__(env_fn) def get_env_attr(self, key: str) -> Any: self.parent_remote.send(["getattr", key]) return self.parent_remote.recv() def set_env_attr(self, key: str, value: Any) -> None: self.parent_remote.send(["setattr", {"key": key, "value": value}]) def _decode_obs(self) -> dict | tuple | np.ndarray: def decode_obs( buffer: dict | tuple | ShArray | None, ) -> dict | tuple | np.ndarray: if isinstance(buffer, ShArray): return buffer.get() if isinstance(buffer, tuple): return tuple([decode_obs(b) for b in buffer]) if isinstance(buffer, dict): return {k: decode_obs(v) for k, v in buffer.items()} raise NotImplementedError return decode_obs(self.buffer) @staticmethod def wait( # type: ignore workers: list["SubprocEnvWorker"], wait_num: int, timeout: float | None = None, ) -> list["SubprocEnvWorker"]: remain_conns = conns = [x.parent_remote for x in workers] ready_conns: list[connection.Connection] = [] remain_time, t1 = timeout, time.time() while len(remain_conns) > 0 and len(ready_conns) < wait_num: if timeout: remain_time = timeout - (time.time() - t1) if remain_time <= 0: break # connection.wait hangs if the list is empty new_ready_conns = connection.wait(remain_conns, timeout=remain_time) # type: ignore ready_conns.extend(new_ready_conns) # type: ignore remain_conns = [conn for conn in remain_conns if conn not in ready_conns] # type: ignore return [workers[conns.index(con)] for con in ready_conns] # type: ignore def send(self, action: np.ndarray | None, **kwargs: Any) -> None: if action is None: if "seed" in kwargs: super().seed(kwargs["seed"]) self.parent_remote.send(["reset", kwargs]) else: self.parent_remote.send(["step", action]) def recv(self) -> gym_new_venv_step_type | tuple[np.ndarray, dict]: result = self.parent_remote.recv() if isinstance(result, tuple): if len(result) == 2: obs, info = result if self.share_memory: obs = self._decode_obs() return obs, info obs = result[0] if self.share_memory: obs = self._decode_obs() # TODO: figure out the typing issue, simplify and document this method return (obs, *result[1:]) obs = result if self.share_memory: obs = self._decode_obs() return obs def reset(self, **kwargs: Any) -> tuple[np.ndarray, dict]: if "seed" in kwargs: super().seed(kwargs["seed"]) self.parent_remote.send(["reset", kwargs]) result = self.parent_remote.recv() if isinstance(result, tuple): obs, info = result if self.share_memory: obs = self._decode_obs() return obs, info obs = result if self.share_memory: obs = self._decode_obs() return obs def seed(self, seed: int | None = None) -> list[int] | None: super().seed(seed) self.parent_remote.send(["seed", seed]) return self.parent_remote.recv() def render(self, **kwargs: Any) -> Any: self.parent_remote.send(["render", kwargs]) return self.parent_remote.recv() def close_env(self) -> None: try: self.parent_remote.send(["close", None]) # mp may be deleted so it may raise AttributeError self.parent_remote.recv() self.process.join() except (BrokenPipeError, EOFError, AttributeError): pass # ensure the subproc is terminated self.process.terminate()