#!/usr/bin/env python3 import os from collections.abc import Sequence import torch from examples.mujoco.mujoco_env import MujocoEnvFactory from tianshou.highlevel.config import SamplingConfig from tianshou.highlevel.experiment import ( ExperimentConfig, TD3ExperimentBuilder, ) from tianshou.highlevel.params.env_param import MaxActionScaled from tianshou.highlevel.params.noise import ( MaxActionScaledGaussian, ) from tianshou.highlevel.params.policy_params import TD3Params from tianshou.utils import logging from tianshou.utils.logging import datetime_tag def main( experiment_config: ExperimentConfig, task: str = "Ant-v4", buffer_size: int = 1000000, hidden_sizes: Sequence[int] = (256, 256), actor_lr: float = 3e-4, critic_lr: float = 3e-4, gamma: float = 0.99, tau: float = 0.005, exploration_noise: float = 0.1, policy_noise: float = 0.2, noise_clip: float = 0.5, update_actor_freq: int = 2, start_timesteps: int = 25000, epoch: int = 200, step_per_epoch: int = 5000, step_per_collect: int = 1, update_per_step: int = 1, n_step: int = 1, batch_size: int = 256, training_num: int = 1, test_num: int = 10, ) -> None: log_name = os.path.join(task, "td3", str(experiment_config.seed), datetime_tag()) sampling_config = SamplingConfig( num_epochs=epoch, step_per_epoch=step_per_epoch, num_train_envs=training_num, num_test_envs=test_num, buffer_size=buffer_size, batch_size=batch_size, step_per_collect=step_per_collect, update_per_step=update_per_step, start_timesteps=start_timesteps, start_timesteps_random=True, ) env_factory = MujocoEnvFactory(task, experiment_config.seed, obs_norm=False) experiment = ( TD3ExperimentBuilder(env_factory, experiment_config, sampling_config) .with_td3_params( TD3Params( tau=tau, gamma=gamma, estimation_step=n_step, update_actor_freq=update_actor_freq, noise_clip=MaxActionScaled(noise_clip), policy_noise=MaxActionScaled(policy_noise), exploration_noise=MaxActionScaledGaussian(exploration_noise), actor_lr=actor_lr, critic1_lr=critic_lr, critic2_lr=critic_lr, ), ) .with_actor_factory_default(hidden_sizes, torch.nn.Tanh) .with_common_critic_factory_default(hidden_sizes, torch.nn.Tanh) .build() ) experiment.run(log_name) if __name__ == "__main__": logging.run_cli(main)