from collections.abc import Callable, Sequence from typing import Any import numpy as np import torch from torch import nn from tianshou.utils.net.discrete import NoisyLinear def layer_init(layer: nn.Module, std: float = np.sqrt(2), bias_const: float = 0.0) -> nn.Module: torch.nn.init.orthogonal_(layer.weight, std) torch.nn.init.constant_(layer.bias, bias_const) return layer def scale_obs(module: type[nn.Module], denom: float = 255.0) -> type[nn.Module]: class scaled_module(module): def forward( self, obs: np.ndarray | torch.Tensor, state: Any | None = None, info: dict[str, Any] | None = None, ) -> tuple[torch.Tensor, Any]: if info is None: info = {} return super().forward(obs / denom, state, info) return scaled_module class DQN(nn.Module): """Reference: Human-level control through deep reinforcement learning. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, c: int, h: int, w: int, action_shape: Sequence[int], device: str | int | torch.device = "cpu", features_only: bool = False, output_dim: int | None = None, layer_init: Callable[[nn.Module], nn.Module] = lambda x: x, ) -> None: super().__init__() self.device = device self.net = nn.Sequential( layer_init(nn.Conv2d(c, 32, kernel_size=8, stride=4)), nn.ReLU(inplace=True), layer_init(nn.Conv2d(32, 64, kernel_size=4, stride=2)), nn.ReLU(inplace=True), layer_init(nn.Conv2d(64, 64, kernel_size=3, stride=1)), nn.ReLU(inplace=True), nn.Flatten(), ) with torch.no_grad(): self.output_dim = int(np.prod(self.net(torch.zeros(1, c, h, w)).shape[1:])) if not features_only: self.net = nn.Sequential( self.net, layer_init(nn.Linear(self.output_dim, 512)), nn.ReLU(inplace=True), layer_init(nn.Linear(512, int(np.prod(action_shape)))), ) self.output_dim = np.prod(action_shape) elif output_dim is not None: self.net = nn.Sequential( self.net, layer_init(nn.Linear(self.output_dim, output_dim)), nn.ReLU(inplace=True), ) self.output_dim = output_dim def forward( self, obs: np.ndarray | torch.Tensor, state: Any | None = None, info: dict[str, Any] | None = None, ) -> tuple[torch.Tensor, Any]: r"""Mapping: s -> Q(s, \*).""" if info is None: info = {} obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32) return self.net(obs), state class C51(DQN): """Reference: A distributional perspective on reinforcement learning. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, c: int, h: int, w: int, action_shape: Sequence[int], num_atoms: int = 51, device: str | int | torch.device = "cpu", ) -> None: self.action_num = np.prod(action_shape) super().__init__(c, h, w, [self.action_num * num_atoms], device) self.num_atoms = num_atoms def forward( self, obs: np.ndarray | torch.Tensor, state: Any | None = None, info: dict[str, Any] | None = None, ) -> tuple[torch.Tensor, Any]: r"""Mapping: x -> Z(x, \*).""" if info is None: info = {} obs, state = super().forward(obs) obs = obs.view(-1, self.num_atoms).softmax(dim=-1) obs = obs.view(-1, self.action_num, self.num_atoms) return obs, state class Rainbow(DQN): """Reference: Rainbow: Combining Improvements in Deep Reinforcement Learning. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, c: int, h: int, w: int, action_shape: Sequence[int], num_atoms: int = 51, noisy_std: float = 0.5, device: str | int | torch.device = "cpu", is_dueling: bool = True, is_noisy: bool = True, ) -> None: super().__init__(c, h, w, action_shape, device, features_only=True) self.action_num = np.prod(action_shape) self.num_atoms = num_atoms def linear(x, y): if is_noisy: return NoisyLinear(x, y, noisy_std) return nn.Linear(x, y) self.Q = nn.Sequential( linear(self.output_dim, 512), nn.ReLU(inplace=True), linear(512, self.action_num * self.num_atoms), ) self._is_dueling = is_dueling if self._is_dueling: self.V = nn.Sequential( linear(self.output_dim, 512), nn.ReLU(inplace=True), linear(512, self.num_atoms), ) self.output_dim = self.action_num * self.num_atoms def forward( self, obs: np.ndarray | torch.Tensor, state: Any | None = None, info: dict[str, Any] | None = None, ) -> tuple[torch.Tensor, Any]: r"""Mapping: x -> Z(x, \*).""" if info is None: info = {} obs, state = super().forward(obs) q = self.Q(obs) q = q.view(-1, self.action_num, self.num_atoms) if self._is_dueling: v = self.V(obs) v = v.view(-1, 1, self.num_atoms) logits = q - q.mean(dim=1, keepdim=True) + v else: logits = q probs = logits.softmax(dim=2) return probs, state class QRDQN(DQN): """Reference: Distributional Reinforcement Learning with Quantile Regression. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, c: int, h: int, w: int, action_shape: Sequence[int], num_quantiles: int = 200, device: str | int | torch.device = "cpu", ) -> None: self.action_num = np.prod(action_shape) super().__init__(c, h, w, [self.action_num * num_quantiles], device) self.num_quantiles = num_quantiles def forward( self, obs: np.ndarray | torch.Tensor, state: Any | None = None, info: dict[str, Any] | None = None, ) -> tuple[torch.Tensor, Any]: r"""Mapping: x -> Z(x, \*).""" if info is None: info = {} obs, state = super().forward(obs) obs = obs.view(-1, self.action_num, self.num_quantiles) return obs, state