import os import gym import torch import pprint import argparse import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.env import SubprocVectorEnv from tianshou.utils.net.common import Net from tianshou.trainer import offpolicy_trainer from tianshou.data import Collector, ReplayBuffer from tianshou.policy import DiscreteSACPolicy from tianshou.utils.net.discrete import Actor, Critic def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='CartPole-v0') parser.add_argument('--seed', type=int, default=1626) parser.add_argument('--buffer-size', type=int, default=20000) parser.add_argument('--actor-lr', type=float, default=3e-4) parser.add_argument('--critic-lr', type=float, default=1e-3) parser.add_argument('--alpha-lr', type=float, default=3e-4) parser.add_argument('--gamma', type=float, default=0.95) parser.add_argument('--tau', type=float, default=0.005) parser.add_argument('--alpha', type=float, default=0.05) parser.add_argument('--auto_alpha', type=int, default=0) parser.add_argument('--epoch', type=int, default=5) parser.add_argument('--step-per-epoch', type=int, default=1000) parser.add_argument('--collect-per-step', type=int, default=5) parser.add_argument('--batch-size', type=int, default=64) parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[128, 128]) parser.add_argument('--training-num', type=int, default=16) parser.add_argument('--test-num', type=int, default=100) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.0) parser.add_argument('--rew-norm', type=int, default=0) parser.add_argument('--ignore-done', type=int, default=0) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') args = parser.parse_known_args()[0] return args def test_discrete_sac(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n train_envs = SubprocVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) test_envs = SubprocVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) actor = Actor(net, args.action_shape, softmax_output=False).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) net_c1 = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) critic1 = Critic(net_c1, last_size=args.action_shape).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) net_c2 = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) critic2 = Critic(net_c2, last_size=args.action_shape).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) # better not to use auto alpha in CartPole if args.auto_alpha: target_entropy = 0.98 * np.log(np.prod(args.action_shape)) log_alpha = torch.zeros(1, requires_grad=True, device=args.device) alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr) args.alpha = (target_entropy, log_alpha, alpha_optim) policy = DiscreteSACPolicy( actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, args.tau, args.gamma, args.alpha, reward_normalization=args.rew_norm, ignore_done=args.ignore_done) # collector train_collector = Collector( policy, train_envs, ReplayBuffer(args.buffer_size)) test_collector = Collector(policy, test_envs) # train_collector.collect(n_step=args.buffer_size) # log log_path = os.path.join(args.logdir, args.task, 'discrete_sac') writer = SummaryWriter(log_path) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= env.spec.reward_threshold # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer, test_in_train=False) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}') if __name__ == '__main__': test_discrete_sac()