import os import gym import torch import pprint import argparse import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.policy import SACPolicy from tianshou.utils import TensorboardLogger from tianshou.env import DummyVectorEnv from tianshou.exploration import OUNoise from tianshou.utils.net.common import Net from tianshou.trainer import offpolicy_trainer from tianshou.data import Collector, VectorReplayBuffer from tianshou.utils.net.continuous import ActorProb, Critic def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='MountainCarContinuous-v0') parser.add_argument('--seed', type=int, default=1626) parser.add_argument('--buffer-size', type=int, default=50000) parser.add_argument('--actor-lr', type=float, default=3e-4) parser.add_argument('--critic-lr', type=float, default=3e-4) parser.add_argument('--alpha-lr', type=float, default=3e-4) parser.add_argument('--noise_std', type=float, default=1.2) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--tau', type=float, default=0.005) parser.add_argument('--auto_alpha', type=int, default=1) parser.add_argument('--alpha', type=float, default=0.2) parser.add_argument('--epoch', type=int, default=20) parser.add_argument('--step-per-epoch', type=int, default=12000) parser.add_argument('--step-per-collect', type=int, default=5) parser.add_argument('--update-per-step', type=float, default=0.2) parser.add_argument('--batch-size', type=int, default=128) parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[128, 128]) parser.add_argument('--training-num', type=int, default=5) parser.add_argument('--test-num', type=int, default=100) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.) parser.add_argument('--rew-norm', type=bool, default=False) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') return parser.parse_args() def test_sac(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] # train_envs = gym.make(args.task) train_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) actor = ActorProb( net, args.action_shape, max_action=args.max_action, device=args.device, unbounded=True ).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) net_c1 = Net(args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, concat=True, device=args.device) critic1 = Critic(net_c1, device=args.device).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) net_c2 = Net(args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, concat=True, device=args.device) critic2 = Critic(net_c2, device=args.device).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) if args.auto_alpha: target_entropy = -np.prod(env.action_space.shape) log_alpha = torch.zeros(1, requires_grad=True, device=args.device) alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr) args.alpha = (target_entropy, log_alpha, alpha_optim) policy = SACPolicy( actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, tau=args.tau, gamma=args.gamma, alpha=args.alpha, reward_normalization=args.rew_norm, exploration_noise=OUNoise(0.0, args.noise_std), action_space=env.action_space) # collector train_collector = Collector( policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs)), exploration_noise=True) test_collector = Collector(policy, test_envs) # train_collector.collect(n_step=args.buffer_size) # log log_path = os.path.join(args.logdir, args.task, 'sac') writer = SummaryWriter(log_path) logger = TensorboardLogger(writer) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= env.spec.reward_threshold # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size, update_per_step=args.update_per_step, stop_fn=stop_fn, save_fn=save_fn, logger=logger) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! policy.eval() test_envs.seed(args.seed) test_collector.reset() result = test_collector.collect(n_episode=args.test_num, render=args.render) rews, lens = result["rews"], result["lens"] print(f"Final reward: {rews.mean()}, length: {lens.mean()}") if __name__ == '__main__': test_sac()