#!/usr/bin/env python3 import argparse import datetime import os import pprint import gym import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from examples.offline.utils import load_buffer_d4rl from tianshou.data import Collector from tianshou.env import SubprocVectorEnv from tianshou.policy import ImitationPolicy from tianshou.trainer import offline_trainer from tianshou.utils import TensorboardLogger, WandbLogger from tianshou.utils.net.common import Net from tianshou.utils.net.continuous import Actor def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="HalfCheetah-v2") parser.add_argument("--seed", type=int, default=0) parser.add_argument( "--expert-data-task", type=str, default="halfcheetah-expert-v2" ) parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[256, 256]) parser.add_argument("--lr", type=float, default=1e-4) parser.add_argument("--epoch", type=int, default=200) parser.add_argument("--step-per-epoch", type=int, default=5000) parser.add_argument("--batch-size", type=int, default=256) parser.add_argument("--test-num", type=int, default=10) parser.add_argument("--logdir", type=str, default="log") parser.add_argument("--render", type=float, default=1 / 35) parser.add_argument("--gamma", default=0.99) parser.add_argument( "--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu" ) parser.add_argument("--resume-path", type=str, default=None) parser.add_argument("--resume-id", type=str, default=None) parser.add_argument( "--logger", type=str, default="tensorboard", choices=["tensorboard", "wandb"], ) parser.add_argument("--wandb-project", type=str, default="offline_d4rl.benchmark") parser.add_argument( "--watch", default=False, action="store_true", help="watch the play of pre-trained policy only", ) return parser.parse_args() def test_il(): args = get_args() env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] # float print("device:", args.device) print("Observations shape:", args.state_shape) print("Actions shape:", args.action_shape) print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high)) args.state_dim = args.state_shape[0] args.action_dim = args.action_shape[0] print("Max_action", args.max_action) test_envs = SubprocVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)] ) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) test_envs.seed(args.seed) # model net = Net( args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device, ) actor = Actor( net, action_shape=args.action_shape, max_action=args.max_action, device=args.device ).to(args.device) optim = torch.optim.Adam(actor.parameters(), lr=args.lr) policy = ImitationPolicy( actor, optim, action_space=env.action_space, action_scaling=True, action_bound_method="clip" ) # load a previous policy if args.resume_path: policy.load_state_dict(torch.load(args.resume_path, map_location=args.device)) print("Loaded agent from: ", args.resume_path) # collector test_collector = Collector(policy, test_envs) # log now = datetime.datetime.now().strftime("%y%m%d-%H%M%S") args.algo_name = "cql" log_name = os.path.join(args.task, args.algo_name, str(args.seed), now) log_path = os.path.join(args.logdir, log_name) # logger if args.logger == "wandb": logger = WandbLogger( save_interval=1, name=log_name.replace(os.path.sep, "__"), run_id=args.resume_id, config=args, project=args.wandb_project, ) writer = SummaryWriter(log_path) writer.add_text("args", str(args)) if args.logger == "tensorboard": logger = TensorboardLogger(writer) else: # wandb logger.load(writer) def save_best_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) def watch(): if args.resume_path is None: args.resume_path = os.path.join(log_path, "policy.pth") policy.load_state_dict( torch.load(args.resume_path, map_location=torch.device("cpu")) ) policy.eval() collector = Collector(policy, env) collector.collect(n_episode=1, render=1 / 35) if not args.watch: replay_buffer = load_buffer_d4rl(args.expert_data_task) # trainer result = offline_trainer( policy, replay_buffer, test_collector, args.epoch, args.step_per_epoch, args.test_num, args.batch_size, save_best_fn=save_best_fn, logger=logger, ) pprint.pprint(result) else: watch() # Let's watch its performance! policy.eval() test_envs.seed(args.seed) test_collector.reset() result = test_collector.collect(n_episode=args.test_num, render=args.render) print(f"Final reward: {result['rews'].mean()}, length: {result['lens'].mean()}") if __name__ == "__main__": test_il()