import os import gym import torch import pprint import argparse import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.env import VectorEnv from tianshou.policy import PPOPolicy from tianshou.policy.dist import DiagGaussian from tianshou.trainer import onpolicy_trainer from tianshou.data import Collector, ReplayBuffer if __name__ == '__main__': from net import ActorProb, Critic else: # pytest from test.continuous.net import ActorProb, Critic def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='Pendulum-v0') parser.add_argument('--seed', type=int, default=1626) parser.add_argument('--buffer-size', type=int, default=20000) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--epoch', type=int, default=20) parser.add_argument('--step-per-epoch', type=int, default=1000) parser.add_argument('--collect-per-step', type=int, default=1) parser.add_argument('--repeat-per-collect', type=int, default=2) parser.add_argument('--batch-size', type=int, default=128) parser.add_argument('--layer-num', type=int, default=1) parser.add_argument('--training-num', type=int, default=16) parser.add_argument('--test-num', type=int, default=100) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') # ppo special parser.add_argument('--vf-coef', type=float, default=0.5) parser.add_argument('--ent-coef', type=float, default=0.01) parser.add_argument('--eps-clip', type=float, default=0.2) parser.add_argument('--max-grad-norm', type=float, default=0.5) parser.add_argument('--gae-lambda', type=float, default=0.95) parser.add_argument('--rew-norm', type=int, default=1) parser.add_argument('--dual-clip', type=float, default=None) parser.add_argument('--value-clip', type=int, default=1) args = parser.parse_known_args()[0] return args def test_ppo(args=get_args()): torch.set_num_threads(1) # we just need only one thread for NN env = gym.make(args.task) if args.task == 'Pendulum-v0': env.spec.reward_threshold = -250 args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] # you can also use tianshou.env.SubprocVectorEnv # train_envs = gym.make(args.task) train_envs = VectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = VectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model actor = ActorProb( args.layer_num, args.state_shape, args.action_shape, args.max_action, args.device ).to(args.device) critic = Critic( args.layer_num, args.state_shape, device=args.device ).to(args.device) # orthogonal initialization for m in list(actor.modules()) + list(critic.modules()): if isinstance(m, torch.nn.Linear): torch.nn.init.orthogonal_(m.weight) torch.nn.init.zeros_(m.bias) optim = torch.optim.Adam(list( actor.parameters()) + list(critic.parameters()), lr=args.lr) dist = DiagGaussian policy = PPOPolicy( actor, critic, optim, dist, args.gamma, max_grad_norm=args.max_grad_norm, eps_clip=args.eps_clip, vf_coef=args.vf_coef, ent_coef=args.ent_coef, reward_normalization=args.rew_norm, # dual_clip=args.dual_clip, # dual clip cause monotonically increasing log_std :) value_clip=args.value_clip, # action_range=[env.action_space.low[0], env.action_space.high[0]],) # if clip the action, ppo would not converge :) gae_lambda=args.gae_lambda) # collector train_collector = Collector( policy, train_envs, ReplayBuffer(args.buffer_size)) test_collector = Collector(policy, test_envs) # log log_path = os.path.join(args.logdir, args.task, 'ppo') writer = SummaryWriter(log_path) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(x): return x >= env.spec.reward_threshold # trainer result = onpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.repeat_per_collect, args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer) assert stop_fn(result['best_reward']) train_collector.close() test_collector.close() if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}') collector.close() if __name__ == '__main__': test_ppo()