#!/usr/bin/env python3 import os from collections.abc import Sequence from examples.mujoco.mujoco_env import MujocoEnvFactory from tianshou.highlevel.config import SamplingConfig from tianshou.highlevel.experiment import ( DDPGExperimentBuilder, ExperimentConfig, ) from tianshou.highlevel.params.noise import MaxActionScaledGaussian from tianshou.highlevel.params.policy_params import DDPGParams from tianshou.utils import logging from tianshou.utils.logging import datetime_tag def main( experiment_config: ExperimentConfig, task: str = "Ant-v4", buffer_size: int = 1000000, hidden_sizes: Sequence[int] = (256, 256), actor_lr: float = 1e-3, critic_lr: float = 1e-3, gamma: float = 0.99, tau: float = 0.005, exploration_noise: float = 0.1, start_timesteps: int = 25000, epoch: int = 200, step_per_epoch: int = 5000, step_per_collect: int = 1, update_per_step: int = 1, n_step: int = 1, batch_size: int = 256, training_num: int = 1, test_num: int = 10, ) -> None: log_name = os.path.join(task, "ddpg", str(experiment_config.seed), datetime_tag()) sampling_config = SamplingConfig( num_epochs=epoch, step_per_epoch=step_per_epoch, batch_size=batch_size, num_train_envs=training_num, num_test_envs=test_num, buffer_size=buffer_size, step_per_collect=step_per_collect, update_per_step=update_per_step, repeat_per_collect=None, start_timesteps=start_timesteps, start_timesteps_random=True, ) env_factory = MujocoEnvFactory( task, train_seed=sampling_config.train_seed, test_seed=sampling_config.test_seed, obs_norm=False, ) experiment = ( DDPGExperimentBuilder(env_factory, experiment_config, sampling_config) .with_ddpg_params( DDPGParams( actor_lr=actor_lr, critic_lr=critic_lr, gamma=gamma, tau=tau, exploration_noise=MaxActionScaledGaussian(exploration_noise), estimation_step=n_step, ), ) .with_actor_factory_default(hidden_sizes) .with_critic_factory_default(hidden_sizes) .build() ) experiment.run(override_experiment_name=log_name) if __name__ == "__main__": logging.run_cli(main)