#!/usr/bin/env python3 import os from collections.abc import Sequence from typing import Literal import torch from examples.mujoco.mujoco_env import MujocoEnvFactory from tianshou.highlevel.config import SamplingConfig from tianshou.highlevel.experiment import ( ExperimentConfig, TRPOExperimentBuilder, ) from tianshou.highlevel.params.dist_fn import ( DistributionFunctionFactoryIndependentGaussians, ) from tianshou.highlevel.params.lr_scheduler import LRSchedulerFactoryLinear from tianshou.highlevel.params.policy_params import TRPOParams from tianshou.utils import logging from tianshou.utils.logging import datetime_tag def main( experiment_config: ExperimentConfig, task: str = "Ant-v4", buffer_size: int = 4096, hidden_sizes: Sequence[int] = (64, 64), lr: float = 1e-3, gamma: float = 0.99, epoch: int = 100, step_per_epoch: int = 30000, step_per_collect: int = 1024, repeat_per_collect: int = 1, batch_size: int = 16, training_num: int = 16, test_num: int = 10, rew_norm: bool = True, gae_lambda: float = 0.95, bound_action_method: Literal["clip", "tanh"] = "clip", lr_decay: bool = True, norm_adv: bool = True, optim_critic_iters: int = 20, max_kl: float = 0.01, backtrack_coeff: float = 0.8, max_backtracks: int = 10, ) -> None: log_name = os.path.join(task, "trpo", str(experiment_config.seed), datetime_tag()) sampling_config = SamplingConfig( num_epochs=epoch, step_per_epoch=step_per_epoch, batch_size=batch_size, num_train_envs=training_num, num_test_envs=test_num, buffer_size=buffer_size, step_per_collect=step_per_collect, repeat_per_collect=repeat_per_collect, ) env_factory = MujocoEnvFactory( task, train_seed=sampling_config.train_seed, test_seed=sampling_config.test_seed, obs_norm=True, ) experiment = ( TRPOExperimentBuilder(env_factory, experiment_config, sampling_config) .with_trpo_params( TRPOParams( discount_factor=gamma, gae_lambda=gae_lambda, action_bound_method=bound_action_method, reward_normalization=rew_norm, advantage_normalization=norm_adv, optim_critic_iters=optim_critic_iters, max_kl=max_kl, backtrack_coeff=backtrack_coeff, max_backtracks=max_backtracks, lr=lr, lr_scheduler_factory=LRSchedulerFactoryLinear(sampling_config) if lr_decay else None, dist_fn=DistributionFunctionFactoryIndependentGaussians(), ), ) .with_actor_factory_default(hidden_sizes, torch.nn.Tanh, continuous_unbounded=True) .with_critic_factory_default(hidden_sizes, torch.nn.Tanh) .build() ) experiment.run(override_experiment_name=log_name) if __name__ == "__main__": logging.run_cli(main)