import logging from abc import ABC, abstractmethod from collections.abc import Callable, Sequence from enum import Enum from typing import Any, TypeAlias, cast import gymnasium as gym import gymnasium.spaces from gymnasium import Env from tianshou.env import ( BaseVectorEnv, DummyVectorEnv, RayVectorEnv, SubprocVectorEnv, ) from tianshou.highlevel.persistence import Persistence from tianshou.utils.net.common import TActionShape from tianshou.utils.string import ToStringMixin TObservationShape: TypeAlias = int | Sequence[int] log = logging.getLogger(__name__) class EnvType(Enum): """Enumeration of environment types.""" CONTINUOUS = "continuous" DISCRETE = "discrete" def is_discrete(self) -> bool: return self == EnvType.DISCRETE def is_continuous(self) -> bool: return self == EnvType.CONTINUOUS def assert_continuous(self, requiring_entity: Any) -> None: if not self.is_continuous(): raise AssertionError(f"{requiring_entity} requires continuous environments") def assert_discrete(self, requiring_entity: Any) -> None: if not self.is_discrete(): raise AssertionError(f"{requiring_entity} requires discrete environments") @staticmethod def from_env(env: Env) -> "EnvType": if isinstance(env.action_space, gymnasium.spaces.Discrete): return EnvType.DISCRETE elif isinstance(env.action_space, gymnasium.spaces.Box): return EnvType.CONTINUOUS else: raise Exception(f"Unsupported environment type with action space {env.action_space}") class EnvMode(Enum): """Indicates the purpose for which an environment is created.""" TRAIN = "train" TEST = "test" WATCH = "watch" class VectorEnvType(Enum): DUMMY = "dummy" """Vectorized environment without parallelization; environments are processed sequentially""" SUBPROC = "subproc" """Parallelization based on `subprocess`""" SUBPROC_SHARED_MEM = "shmem" """Parallelization based on `subprocess` with shared memory""" SUBPROC_SHARED_MEM_FORK_CONTEXT = "shmem_fork" """Parallelization based on `subprocess` with shared memory and fork context (relevant for macOS, which uses `spawn` by default https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods)""" RAY = "ray" """Parallelization based on the `ray` library""" def create_venv( self, factories: Sequence[Callable[[], gym.Env]], ) -> BaseVectorEnv: match self: case VectorEnvType.DUMMY: return DummyVectorEnv(factories) case VectorEnvType.SUBPROC: return SubprocVectorEnv(factories) case VectorEnvType.SUBPROC_SHARED_MEM: return SubprocVectorEnv(factories, share_memory=True) case VectorEnvType.SUBPROC_SHARED_MEM_FORK_CONTEXT: return SubprocVectorEnv(factories, share_memory=True, context="fork") case VectorEnvType.RAY: return RayVectorEnv(factories) case _: raise NotImplementedError(self) class Environments(ToStringMixin, ABC): """Represents (vectorized) environments for a learning process.""" def __init__( self, env: gym.Env, train_envs: BaseVectorEnv, test_envs: BaseVectorEnv, watch_env: BaseVectorEnv | None = None, ): self.env = env self.train_envs = train_envs self.test_envs = test_envs self.watch_env = watch_env self.persistence: Sequence[Persistence] = [] @staticmethod def from_factory_and_type( factory_fn: Callable[[EnvMode], gym.Env], env_type: EnvType, venv_type: VectorEnvType, num_training_envs: int, num_test_envs: int, create_watch_env: bool = False, ) -> "Environments": """Creates a suitable subtype instance from a factory function that creates a single instance and the type of environment (continuous/discrete). :param factory_fn: the factory for a single environment instance :param env_type: the type of environments created by `factory_fn` :param venv_type: the vector environment type to use for parallelization :param num_training_envs: the number of training environments to create :param num_test_envs: the number of test environments to create :param create_watch_env: whether to create an environment for watching the agent :return: the instance """ train_envs = venv_type.create_venv( [lambda: factory_fn(EnvMode.TRAIN)] * num_training_envs, ) test_envs = venv_type.create_venv( [lambda: factory_fn(EnvMode.TEST)] * num_test_envs, ) if create_watch_env: watch_env = VectorEnvType.DUMMY.create_venv([lambda: factory_fn(EnvMode.WATCH)]) else: watch_env = None env = factory_fn(EnvMode.TRAIN) match env_type: case EnvType.CONTINUOUS: return ContinuousEnvironments(env, train_envs, test_envs, watch_env) case EnvType.DISCRETE: return DiscreteEnvironments(env, train_envs, test_envs, watch_env) case _: raise ValueError(f"Environment type {env_type} not handled") def _tostring_includes(self) -> list[str]: return [] def _tostring_additional_entries(self) -> dict[str, Any]: return self.info() def info(self) -> dict[str, Any]: return { "action_shape": self.get_action_shape(), "state_shape": self.get_observation_shape(), } def set_persistence(self, *p: Persistence) -> None: """Associates the given persistence handlers which may persist and restore environment-specific information. :param p: persistence handlers """ self.persistence = p @abstractmethod def get_action_shape(self) -> TActionShape: pass @abstractmethod def get_observation_shape(self) -> TObservationShape: pass def get_action_space(self) -> gym.Space: return self.env.action_space def get_observation_space(self) -> gym.Space: return self.env.observation_space @abstractmethod def get_type(self) -> EnvType: pass class ContinuousEnvironments(Environments): """Represents (vectorized) continuous environments.""" def __init__( self, env: gym.Env, train_envs: BaseVectorEnv, test_envs: BaseVectorEnv, watch_env: BaseVectorEnv | None = None, ): super().__init__(env, train_envs, test_envs, watch_env) self.state_shape, self.action_shape, self.max_action = self._get_continuous_env_info(env) @staticmethod def from_factory( factory_fn: Callable[[EnvMode], gym.Env], venv_type: VectorEnvType, num_training_envs: int, num_test_envs: int, create_watch_env: bool = False, ) -> "ContinuousEnvironments": """Creates an instance from a factory function that creates a single instance. :param factory_fn: the factory for a single environment instance :param venv_type: the vector environment type to use for parallelization :param num_training_envs: the number of training environments to create :param num_test_envs: the number of test environments to create :param create_watch_env: whether to create an environment for watching the agent :return: the instance """ return cast( ContinuousEnvironments, Environments.from_factory_and_type( factory_fn, EnvType.CONTINUOUS, venv_type, num_training_envs, num_test_envs, create_watch_env, ), ) def info(self) -> dict[str, Any]: d = super().info() d["max_action"] = self.max_action return d @staticmethod def _get_continuous_env_info( env: gym.Env, ) -> tuple[tuple[int, ...], tuple[int, ...], float]: if not isinstance(env.action_space, gym.spaces.Box): raise ValueError( "Only environments with continuous action space are supported here. " f"But got env with action space: {env.action_space.__class__}.", ) state_shape = env.observation_space.shape or env.observation_space.n # type: ignore if not state_shape: raise ValueError("Observation space shape is not defined") action_shape = env.action_space.shape max_action = env.action_space.high[0] return state_shape, action_shape, max_action def get_action_shape(self) -> TActionShape: return self.action_shape def get_observation_shape(self) -> TObservationShape: return self.state_shape def get_type(self) -> EnvType: return EnvType.CONTINUOUS class DiscreteEnvironments(Environments): """Represents (vectorized) discrete environments.""" def __init__( self, env: gym.Env, train_envs: BaseVectorEnv, test_envs: BaseVectorEnv, watch_env: BaseVectorEnv | None = None, ): super().__init__(env, train_envs, test_envs, watch_env) self.observation_shape = env.observation_space.shape or env.observation_space.n # type: ignore self.action_shape = env.action_space.shape or env.action_space.n # type: ignore @staticmethod def from_factory( factory_fn: Callable[[EnvMode], gym.Env], venv_type: VectorEnvType, num_training_envs: int, num_test_envs: int, create_watch_env: bool = False, ) -> "DiscreteEnvironments": """Creates an instance from a factory function that creates a single instance. :param factory_fn: the factory for a single environment instance :param venv_type: the vector environment type to use for parallelization :param num_training_envs: the number of training environments to create :param num_test_envs: the number of test environments to create :param create_watch_env: whether to create an environment for watching the agent :return: the instance """ return cast( DiscreteEnvironments, Environments.from_factory_and_type( factory_fn, EnvType.DISCRETE, venv_type, num_training_envs, num_test_envs, create_watch_env, ), ) def get_action_shape(self) -> TActionShape: return self.action_shape def get_observation_shape(self) -> TObservationShape: return self.observation_shape def get_type(self) -> EnvType: return EnvType.DISCRETE class EnvPoolFactory: """A factory for the creation of envpool-based vectorized environments, which can be used in conjunction with :class:`EnvFactoryRegistered`. """ def _transform_task(self, task: str) -> str: return task def _transform_kwargs(self, kwargs: dict, mode: EnvMode) -> dict: """Transforms gymnasium keyword arguments to be envpool-compatible. :param kwargs: keyword arguments that would normally be passed to `gymnasium.make`. :param mode: the environment mode :return: the transformed keyword arguments """ kwargs = dict(kwargs) if "render_mode" in kwargs: del kwargs["render_mode"] return kwargs def create_venv( self, task: str, num_envs: int, mode: EnvMode, seed: int, kwargs: dict, ) -> BaseVectorEnv: import envpool envpool_task = self._transform_task(task) envpool_kwargs = self._transform_kwargs(kwargs, mode) return envpool.make_gymnasium( envpool_task, num_envs=num_envs, seed=seed, **envpool_kwargs, ) class EnvFactory(ToStringMixin, ABC): """Main interface for the creation of environments (in various forms).""" def __init__(self, venv_type: VectorEnvType): """:param venv_type: the type of vectorized environment to use for train and test environments. watch environments are always created as dummy environments. """ self.venv_type = venv_type @abstractmethod def create_env(self, mode: EnvMode) -> Env: pass def create_venv(self, num_envs: int, mode: EnvMode) -> BaseVectorEnv: """Create vectorized environments. :param num_envs: the number of environments :param mode: the mode for which to create. In `WATCH` mode the resulting venv will always be of type `DUMMY` with a single env. :return: the vectorized environments """ if mode == EnvMode.WATCH: return VectorEnvType.DUMMY.create_venv([lambda: self.create_env(mode)]) else: return self.venv_type.create_venv([lambda: self.create_env(mode)] * num_envs) def create_envs( self, num_training_envs: int, num_test_envs: int, create_watch_env: bool = False, ) -> Environments: """Create environments for learning. :param num_training_envs: the number of training environments :param num_test_envs: the number of test environments :param create_watch_env: whether to create an environment for watching the agent :return: the environments """ env = self.create_env(EnvMode.TRAIN) train_envs = self.create_venv(num_training_envs, EnvMode.TRAIN) test_envs = self.create_venv(num_test_envs, EnvMode.TEST) watch_env = self.create_venv(1, EnvMode.WATCH) if create_watch_env else None match EnvType.from_env(env): case EnvType.DISCRETE: return DiscreteEnvironments(env, train_envs, test_envs, watch_env) case EnvType.CONTINUOUS: return ContinuousEnvironments(env, train_envs, test_envs, watch_env) case _: raise ValueError class EnvFactoryRegistered(EnvFactory): """Factory for environments that are registered with gymnasium and thus can be created via `gymnasium.make` (or via `envpool.make_gymnasium`). """ def __init__( self, *, task: str, train_seed: int, test_seed: int, venv_type: VectorEnvType, envpool_factory: EnvPoolFactory | None = None, render_mode_train: str | None = None, render_mode_test: str | None = None, render_mode_watch: str = "human", **make_kwargs: Any, ): """:param task: the gymnasium task/environment identifier :param seed: the random seed :param venv_type: the type of vectorized environment to use (if `envpool_factory` is not specified) :param envpool_factory: the factory to use for vectorized environment creation based on envpool; envpool must be installed. :param render_mode_train: the render mode to use for training environments :param render_mode_test: the render mode to use for test environments :param render_mode_watch: the render mode to use for environments that are used to watch agent performance :param make_kwargs: additional keyword arguments to pass on to `gymnasium.make`. If envpool is used, the gymnasium parameters will be appropriately translated for use with `envpool.make_gymnasium`. """ super().__init__(venv_type) self.task = task self.envpool_factory = envpool_factory self.train_seed = train_seed self.test_seed = test_seed self.render_modes = { EnvMode.TRAIN: render_mode_train, EnvMode.TEST: render_mode_test, EnvMode.WATCH: render_mode_watch, } self.make_kwargs = make_kwargs def _create_kwargs(self, mode: EnvMode) -> dict: """Adapts the keyword arguments for the given mode. :param mode: the mode :return: adapted keyword arguments """ kwargs = dict(self.make_kwargs) kwargs["render_mode"] = self.render_modes.get(mode) return kwargs def create_env(self, mode: EnvMode) -> Env: """Creates a single environment for the given mode. :param mode: the mode :return: an environment """ kwargs = self._create_kwargs(mode) return gymnasium.make(self.task, **kwargs) def create_venv(self, num_envs: int, mode: EnvMode) -> BaseVectorEnv: seed = self.train_seed if mode == EnvMode.TRAIN else self.test_seed if self.envpool_factory is not None: return self.envpool_factory.create_venv( self.task, num_envs, mode, seed, self._create_kwargs(mode), ) else: venv = super().create_venv(num_envs, mode) venv.seed(seed) return venv