import os import gym import torch import pprint import argparse import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.policy import DQNPolicy from tianshou.env import DummyVectorEnv from tianshou.utils.net.common import Net from tianshou.trainer import offpolicy_trainer from tianshou.data import Collector, ReplayBuffer def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='Acrobot-v1') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--eps-test', type=float, default=0.05) parser.add_argument('--eps-train', type=float, default=0.5) parser.add_argument('--buffer-size', type=int, default=20000) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--gamma', type=float, default=0.95) parser.add_argument('--n-step', type=int, default=3) parser.add_argument('--target-update-freq', type=int, default=320) parser.add_argument('--epoch', type=int, default=10) parser.add_argument('--step-per-epoch', type=int, default=1000) parser.add_argument('--collect-per-step', type=int, default=100) parser.add_argument('--batch-size', type=int, default=64) parser.add_argument('--layer-num', type=int, default=0) parser.add_argument('--training-num', type=int, default=8) parser.add_argument('--test-num', type=int, default=100) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') return parser.parse_args() def test_dqn(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # train_envs = gym.make(args.task) # you can also use tianshou.env.SubprocVectorEnv train_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.layer_num, args.state_shape, args.action_shape, args.device, dueling=(2, 2)).to(args.device) optim = torch.optim.Adam(net.parameters(), lr=args.lr) policy = DQNPolicy( net, optim, args.gamma, args.n_step, target_update_freq=args.target_update_freq) # collector train_collector = Collector( policy, train_envs, ReplayBuffer(args.buffer_size)) test_collector = Collector(policy, test_envs) # policy.set_eps(1) train_collector.collect(n_step=args.batch_size) # log log_path = os.path.join(args.logdir, args.task, 'dqn') writer = SummaryWriter(log_path) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= env.spec.reward_threshold def train_fn(epoch, env_step): if env_step <= 100000: policy.set_eps(args.eps_train) elif env_step <= 500000: eps = args.eps_train - (env_step - 100000) / \ 400000 * (0.5 * args.eps_train) policy.set_eps(eps) else: policy.set_eps(0.5 * args.eps_train) def test_fn(epoch, env_step): policy.set_eps(args.eps_test) # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_fn=save_fn, writer=writer) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! policy.eval() policy.set_eps(args.eps_test) test_envs.seed(args.seed) test_collector.reset() result = test_collector.collect(n_episode=[1] * args.test_num, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}') if __name__ == '__main__': test_dqn(get_args())