import torch import pprint import numpy as np class Batch(object): """Tianshou provides :class:`~tianshou.data.Batch` as the internal data structure to pass any kind of data to other methods, for example, a collector gives a :class:`~tianshou.data.Batch` to policy for learning. Here is the usage: :: >>> import numpy as np >>> from tianshou.data import Batch >>> data = Batch(a=4, b=[5, 5], c='2312312') >>> data.b [5, 5] >>> data.b = np.array([3, 4, 5]) >>> print(data) Batch( a: 4, b: [3 4 5], c: 2312312, ) In short, you can define a :class:`Batch` with any key-value pair. The current implementation of Tianshou typically use 6 reserved keys in :class:`~tianshou.data.Batch`: * ``obs`` the observation of step :math:`t` ; * ``act`` the action of step :math:`t` ; * ``rew`` the reward of step :math:`t` ; * ``done`` the done flag of step :math:`t` ; * ``obs_next`` the observation of step :math:`t+1` ; * ``info`` the info of step :math:`t` (in ``gym.Env``, the ``env.step()``\ function return 4 arguments, and the last one is ``info``); :class:`~tianshou.data.Batch` has other methods, including :meth:`~tianshou.data.Batch.__getitem__`, :meth:`~tianshou.data.Batch.__len__`, :meth:`~tianshou.data.Batch.append`, and :meth:`~tianshou.data.Batch.split`: :: >>> data = Batch(obs=np.array([0, 11, 22]), rew=np.array([6, 6, 6])) >>> # here we test __getitem__ >>> index = [2, 1] >>> data[index].obs array([22, 11]) >>> # here we test __len__ >>> len(data) 3 >>> data.append(data) # similar to list.append >>> data.obs array([0, 11, 22, 0, 11, 22]) >>> # split whole data into multiple small batch >>> for d in data.split(size=2, shuffle=False): ... print(d.obs, d.rew) [ 0 11] [6 6] [22 0] [6 6] [11 22] [6 6] """ def __init__(self, **kwargs): super().__init__() self._meta = {} for k, v in kwargs.items(): if (isinstance(v, list) or isinstance(v, np.ndarray)) \ and len(v) > 0 and isinstance(v[0], dict) and k != 'info': self._meta[k] = list(v[0].keys()) for k_ in v[0].keys(): k__ = '_' + k + '@' + k_ self.__dict__[k__] = np.array([ v[i][k_] for i in range(len(v)) ]) elif isinstance(v, dict) or isinstance(v, Batch): self._meta[k] = list(v.keys()) for k_ in v.keys(): k__ = '_' + k + '@' + k_ self.__dict__[k__] = v[k_] else: self.__dict__[k] = kwargs[k] def __getitem__(self, index): """Return self[index].""" if isinstance(index, str): return self.__getattr__(index) b = Batch() for k in self.__dict__: if k != '_meta' and self.__dict__[k] is not None: b.__dict__.update(**{k: self.__dict__[k][index]}) b._meta = self._meta return b def __getattr__(self, key): """Return self.key""" if key not in self._meta: if key not in self.__dict__: raise AttributeError(key) return self.__dict__[key] d = {} for k_ in self._meta[key]: k__ = '_' + key + '@' + k_ d[k_] = self.__dict__[k__] return Batch(**d) def __repr__(self): """Return str(self).""" s = self.__class__.__name__ + '(\n' flag = False for k in sorted(list(self.__dict__) + list(self._meta)): if k[0] != '_' and (self.__dict__.get(k, None) is not None or k in self._meta): rpl = '\n' + ' ' * (6 + len(k)) obj = pprint.pformat(self.__getattr__(k)).replace('\n', rpl) s += f' {k}: {obj},\n' flag = True if flag: s += ')' else: s = self.__class__.__name__ + '()' return s def keys(self): """Return self.keys().""" return sorted([i for i in self.__dict__ if i[0] != '_'] + list(self._meta)) def append(self, batch): """Append a :class:`~tianshou.data.Batch` object to current batch.""" assert isinstance(batch, Batch), 'Only append Batch is allowed!' for k in batch.__dict__: if k == '_meta': self._meta.update(batch._meta) continue if batch.__dict__[k] is None: continue if not hasattr(self, k) or self.__dict__[k] is None: self.__dict__[k] = batch.__dict__[k] elif isinstance(batch.__dict__[k], np.ndarray): self.__dict__[k] = np.concatenate([ self.__dict__[k], batch.__dict__[k]]) elif isinstance(batch.__dict__[k], torch.Tensor): self.__dict__[k] = torch.cat([ self.__dict__[k], batch.__dict__[k]]) elif isinstance(batch.__dict__[k], list): self.__dict__[k] += batch.__dict__[k] else: s = 'No support for append with type' \ + str(type(batch.__dict__[k])) \ + 'in class Batch.' raise TypeError(s) def __len__(self): """Return len(self).""" return min([ len(self.__dict__[k]) for k in self.__dict__ if k != '_meta' and self.__dict__[k] is not None]) def split(self, size=None, shuffle=True): """Split whole data into multiple small batch. :param int size: if it is ``None``, it does not split the data batch; otherwise it will divide the data batch with the given size. Default to ``None``. :param bool shuffle: randomly shuffle the entire data batch if it is ``True``, otherwise remain in the same. Default to ``True``. """ length = len(self) if size is None: size = length temp = 0 if shuffle: index = np.random.permutation(length) else: index = np.arange(length) while temp < length: yield self[index[temp:temp + size]] temp += size