from collections.abc import Callable from typing import Any, Literal, cast import numpy as np import torch from tianshou.data import Batch, ReplayBuffer, to_torch, to_torch_as from tianshou.data.batch import BatchProtocol from tianshou.data.types import ( BatchWithReturnsProtocol, DistBatchProtocol, RolloutBatchProtocol, ) from tianshou.policy import BasePolicy from tianshou.utils import RunningMeanStd TDistParams = torch.Tensor | tuple[torch.Tensor] class PGPolicy(BasePolicy): """Implementation of REINFORCE algorithm. :param torch.nn.Module model: a model following the rules in :class:`~tianshou.policy.BasePolicy`. (s -> logits) :param torch.optim.Optimizer optim: a torch.optim for optimizing the model. :param dist_fn: distribution class for computing the action. :param float discount_factor: in [0, 1]. Default to 0.99. :param bool action_scaling: whether to map actions from range [-1, 1] to range [action_spaces.low, action_spaces.high]. Default to True. :param str action_bound_method: method to bound action to range [-1, 1], can be either "clip" (for simply clipping the action), "tanh" (for applying tanh squashing) for now, or empty string for no bounding. Default to "clip". :param Optional[gym.Space] action_space: env's action space, mandatory if you want to use option "action_scaling" or "action_bound_method". Default to None. :param lr_scheduler: a learning rate scheduler that adjusts the learning rate in optimizer in each policy.update(). Default to None (no lr_scheduler). :param bool deterministic_eval: whether to use deterministic action instead of stochastic action sampled by the policy. Default to False. .. seealso:: Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed explanation. """ def __init__( self, model: torch.nn.Module, optim: torch.optim.Optimizer, dist_fn: Callable[[TDistParams], torch.distributions.Distribution], discount_factor: float = 0.99, reward_normalization: bool = False, action_scaling: bool = True, action_bound_method: Literal["clip", "tanh"] | None = "clip", deterministic_eval: bool = False, **kwargs: Any, ) -> None: super().__init__( action_scaling=action_scaling, action_bound_method=action_bound_method, **kwargs, ) self.actor = model try: if action_scaling and not np.isclose(model.max_action, 1.0): # type: ignore import warnings warnings.warn( "action_scaling and action_bound_method are only intended" "to deal with unbounded model action space, but find actor model" f"bound action space with max_action={model.max_action}." "Consider using unbounded=True option of the actor model," "or set action_scaling to False and action_bound_method to None.", ) # TODO: why this try/except? warnings is a standard library module except Exception: pass self.optim = optim self.dist_fn = dist_fn assert 0.0 <= discount_factor <= 1.0, "discount factor should be in [0, 1]" self._gamma = discount_factor self._rew_norm = reward_normalization self.ret_rms = RunningMeanStd() self._eps = 1e-8 self._deterministic_eval = deterministic_eval def process_fn( self, batch: RolloutBatchProtocol, buffer: ReplayBuffer, indices: np.ndarray, ) -> BatchWithReturnsProtocol: r"""Compute the discounted returns (Monte Carlo estimates) for each transition. They are added to the batch under the field `returns`. Note: this function will modify the input batch! .. math:: G_t = \sum_{i=t}^T \gamma^{i-t}r_i where :math:`T` is the terminal time step, :math:`\gamma` is the discount factor, :math:`\gamma \in [0, 1]`. :param batch: a data batch which contains several episodes of data in sequential order. Mind that the end of each finished episode of batch should be marked by done flag, unfinished (or collecting) episodes will be recognized by buffer.unfinished_index(). :param buffer: the corresponding replay buffer. :param numpy.ndarray indices: tell batch's location in buffer, batch is equal to buffer[indices]. """ v_s_ = np.full(indices.shape, self.ret_rms.mean) # gae_lambda = 1.0 means we use Monte Carlo estimate unnormalized_returns, _ = self.compute_episodic_return( batch, buffer, indices, v_s_=v_s_, gamma=self._gamma, gae_lambda=1.0, ) if self._rew_norm: batch.returns = (unnormalized_returns - self.ret_rms.mean) / np.sqrt( self.ret_rms.var + self._eps, ) self.ret_rms.update(unnormalized_returns) else: batch.returns = unnormalized_returns batch: BatchWithReturnsProtocol return batch def _get_deterministic_action(self, logits: torch.Tensor) -> torch.Tensor: if self.action_type == "discrete": return logits.argmax(-1) if self.action_type == "continuous": # assume that the mode of the distribution is the first element # of the actor's output (the "logits") return logits[0] raise RuntimeError( f"Unknown action type: {self.action_type}. " f"This should not happen and might be a bug." f"Supported action types are: 'discrete' and 'continuous'.", ) def forward( self, batch: RolloutBatchProtocol, state: dict | BatchProtocol | np.ndarray | None = None, **kwargs: Any, ) -> DistBatchProtocol: """Compute action over the given batch data by applying the actor. Will sample from the dist_fn, if appropriate. Returns a new object representing the processed batch data (contrary to other methods that modify the input batch inplace). .. seealso:: Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for more detailed explanation. """ # TODO: rename? It's not really logits and there are particular # assumptions about the order of the output and on distribution type logits, hidden = self.actor(batch.obs, state=state, info=batch.info) if isinstance(logits, tuple): dist = self.dist_fn(*logits) else: dist = self.dist_fn(logits) # in this case, the dist is unused! if self._deterministic_eval and not self.training: act = self._get_deterministic_action(logits) else: act = dist.sample() result = Batch(logits=logits, act=act, state=hidden, dist=dist) return cast(DistBatchProtocol, result) # TODO: why does mypy complain? def learn( # type: ignore self, batch: RolloutBatchProtocol, batch_size: int, repeat: int, *args: Any, **kwargs: Any, ) -> dict[str, list[float]]: losses = [] for _ in range(repeat): for minibatch in batch.split(batch_size, merge_last=True): self.optim.zero_grad() result = self(minibatch) dist = result.dist act = to_torch_as(minibatch.act, result.act) ret = to_torch(minibatch.returns, torch.float, result.act.device) log_prob = dist.log_prob(act).reshape(len(ret), -1).transpose(0, 1) loss = -(log_prob * ret).mean() loss.backward() self.optim.step() losses.append(loss.item()) return {"loss": losses}