#!/usr/bin/env python # -*- coding: utf-8 -*- # Always prefer setuptools over distutils from setuptools import setup, find_packages # To use a consistent encoding from codecs import open from os import path import re here = path.abspath(path.dirname(__file__)) # Get the version string with open(path.join(here, 'tianshou', '__init__.py'), encoding='utf-8') as f: version = re.search(r'__version__ = \'(.*?)\'', f.read()).group(1) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: readme = f.read() setup( name='tianshou', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version=version, description='A Library for Deep Reinforcement Learning', long_description=readme, # The project's main homepage. url='https://github.com/thu-ml/tianshou', # Author details author='TSAIL', # author_email='', # Choose your license license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Artificial Intelligence', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. # 'Programming Language :: Python :: 2', # 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], # What does your project relate to? keywords='tianshou reinforcement learning model-based', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(exclude=['tests', 'tests.*', 'examples', 'examples.*', 'docs', 'docs.*']), # Alternatively, if you want to distribute just a my_module.py, uncomment # this: # py_modules=["my_module"], # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=['numpy>=1.14.0', 'tensorflow-probability'], # List additional groups of dependencies here (e.g. development # dependencies). You can install these using the following syntax, # for example: # $ pip install -e .[dev,test] # extras_require={ # 'dev': [ # 'Sphinx>=1.7.1', # 'sphinx_rtd_theme', # 'sphinxcontrib-bibtex>=0.3.6', # 'pep8', # 'scipy', # 'coverage', # 'mock' # ], # 'examples': [ # 'scipy', # 'matplotlib', # 'scikit-image', # 'progressbar2' # ], # }, # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. # package_data={ # 'sample': ['package_data.dat'], # }, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. See: # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # In this case, 'data_file' will be installed into '/my_data' # data_files=[('my_data', ['data/data_file'])], # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. # entry_points={ # 'console_scripts': [ # 'sample=sample:main', # ], # }, )