import sys import time from collections.abc import Callable from test.base.env import MoveToRightEnv, NXEnv from typing import Any, Literal import gymnasium as gym import numpy as np import pytest from gymnasium.spaces.discrete import Discrete from tianshou.data import Batch from tianshou.env import ( ContinuousToDiscrete, DummyVectorEnv, MultiDiscreteToDiscrete, RayVectorEnv, ShmemVectorEnv, SubprocVectorEnv, VectorEnvNormObs, ) from tianshou.env.gym_wrappers import TruncatedAsTerminated from tianshou.env.venvs import BaseVectorEnv from tianshou.utils import RunningMeanStd try: import envpool except ImportError: envpool = None def has_ray() -> bool: try: import ray # noqa: F401 return True except ImportError: return False def recurse_comp(a: np.ndarray | list | tuple | dict, b: Any) -> np.bool_ | bool | None: try: if isinstance(a, np.ndarray): if a.dtype == object: return np.array([recurse_comp(m, n) for m, n in zip(a, b, strict=True)]).all() return np.allclose(a, b) if isinstance(a, list | tuple): return np.array([recurse_comp(m, n) for m, n in zip(a, b, strict=True)]).all() if isinstance(a, dict): return np.array([recurse_comp(a[k], b[k]) for k in a]).all() except Exception: return False def test_async_env(size: int = 10000, num: int = 8, sleep: float = 0.1) -> None: # simplify the test case, just keep stepping env_fns = [ lambda i=i: MoveToRightEnv(size=i, sleep=sleep, random_sleep=True) for i in range(size, size + num) ] test_cls = [SubprocVectorEnv, ShmemVectorEnv] if has_ray(): test_cls += [RayVectorEnv] for cls in test_cls: v = cls(env_fns, wait_num=num // 2, timeout=1e-3) v.seed(None) v.reset() # for a random variable u ~ U[0, 1], let v = max{u1, u2, ..., un} # P(v <= x) = x^n (0 <= x <= 1), pdf of v is nx^{n-1} # expectation of v is n / (n + 1) # for a synchronous environment, the following actions should take # about 7 * sleep * num / (num + 1) seconds # for async simulation, the analysis is complicated, but the time cost # should be smaller action_list = [1] * num + [0] * (num * 2) + [1] * (num * 4) current_idx_start = 0 act = action_list[:num] env_ids = list(range(num)) o = [] spent_time = time.time() while current_idx_start < len(action_list): ( A, B, C, D, E, ) = v.step(action=act, id=env_ids) b = Batch({"obs": A, "rew": B, "terminate": C, "truncated": D, "info": E}) env_ids = b.info.env_id o.append(b) current_idx_start += len(act) # len of action may be smaller than len(A) in the end act = action_list[current_idx_start : current_idx_start + len(A)] # truncate env_ids with the first terms # typically len(env_ids) == len(A) == len(action), except for the # last batch when actions are not enough env_ids = env_ids[: len(act)] spent_time = time.time() - spent_time Batch.cat(o) v.close() # assure 1/7 improvement if sys.platform == "linux" and cls != RayVectorEnv: # macOS/Windows cannot pass this check assert spent_time < 6.0 * sleep * num / (num + 1) def test_async_check_id( size: int = 100, num: int = 4, sleep: float = 0.2, timeout: float = 0.7, ) -> None: env_fns = [ lambda: MoveToRightEnv(size=size, sleep=sleep * 2), lambda: MoveToRightEnv(size=size, sleep=sleep * 3), lambda: MoveToRightEnv(size=size, sleep=sleep * 5), lambda: MoveToRightEnv(size=size, sleep=sleep * 7), ] test_cls = [SubprocVectorEnv, ShmemVectorEnv] if has_ray(): test_cls += [RayVectorEnv] total_pass = 0 for cls in test_cls: pass_check = 1 v = cls(env_fns, wait_num=num - 1, timeout=timeout) t = time.time() v.reset() t = time.time() - t print(f"{cls} reset {t}") if t > sleep * 9: # huge than maximum sleep time (7 sleep) pass_check = 0 expect_result = [ [0, 1], [0, 1, 2], [0, 1, 3], [0, 1, 2], [0, 1], [0, 2, 3], [0, 1], ] ids = np.arange(num) for res in expect_result: t = time.time() _, _, _, _, info = v.step([1] * len(ids), ids) t = time.time() - t ids = Batch(info).env_id print(ids, t) if not ( len(ids) == len(res) and np.allclose(sorted(ids), res) and (t < timeout) == (len(res) == num - 1) ): pass_check = 0 break total_pass += pass_check if sys.platform == "linux": # Windows/macOS may not pass this check assert total_pass >= 2 def test_vecenv(size: int = 10, num: int = 8, sleep: float = 0.001) -> None: env_fns = [ lambda i=i: MoveToRightEnv(size=i, sleep=sleep, recurse_state=True) for i in range(size, size + num) ] venv = [ DummyVectorEnv(env_fns), SubprocVectorEnv(env_fns), ShmemVectorEnv(env_fns), ] if has_ray() and sys.platform == "linux": venv += [RayVectorEnv(env_fns)] for v in venv: v.seed(0) action_list = [1] * 5 + [0] * 10 + [1] * 20 for a in action_list: o = [] for v in venv: A, B, C, D, E = v.step(np.array([a] * num)) if sum(C + D): A, _ = v.reset(np.where(C + D)[0]) o.append([A, B, C, D, E]) for index, infos in enumerate(zip(*o, strict=True)): if index == 4: # do not check info here continue for info in infos: assert recurse_comp(infos[0], info) def assert_get(v: BaseVectorEnv, expected: list) -> None: assert v.get_env_attr("size") == expected assert v.get_env_attr("size", id=0) == [expected[0]] assert v.get_env_attr("size", id=[0, 1, 2]) == expected[:3] for v in venv: assert_get(v, list(range(size, size + num))) assert v.env_num == num assert v.action_space == [Discrete(2)] * num v.set_env_attr("size", 0) assert_get(v, [0] * num) v.set_env_attr("size", 1, 0) assert_get(v, [1] + [0] * (num - 1)) v.set_env_attr("size", 2, [1, 2, 3]) assert_get(v, [1] + [2] * 3 + [0] * (num - 4)) for v in venv: v.close() def test_attr_unwrapped() -> None: train_envs = DummyVectorEnv([lambda: gym.make("CartPole-v1")]) train_envs.set_env_attr("test_attribute", 1337) assert train_envs.get_env_attr("test_attribute") == [1337] # mypy doesn't know but BaseVectorEnv takes the reserved keys in gym.Env (one of which is env) assert hasattr(train_envs.workers[0].env, "test_attribute") # type: ignore assert hasattr(train_envs.workers[0].env.unwrapped, "test_attribute") # type: ignore def test_env_obs_dtype() -> None: def create_env(i: int, t: str) -> Callable[[], NXEnv]: return lambda: NXEnv(i, t) for obs_type in ["array", "object"]: envs = SubprocVectorEnv([create_env(x, obs_type) for x in [5, 10, 15, 20]]) obs, info = envs.reset() assert obs.dtype == object obs = envs.step(np.array([1, 1, 1, 1]))[0] assert obs.dtype == object def test_env_reset_optional_kwargs(size: int = 10000, num: int = 8) -> None: env_fns = [lambda i=i: MoveToRightEnv(size=i) for i in range(size, size + num)] test_cls = [DummyVectorEnv, SubprocVectorEnv, ShmemVectorEnv] if has_ray(): test_cls += [RayVectorEnv] for cls in test_cls: v = cls(env_fns, wait_num=num // 2, timeout=1e-3) _, info = v.reset(seed=1) assert len(info) == len(env_fns) assert isinstance(info[0], dict) def test_venv_wrapper_gym(num_envs: int = 4) -> None: # Issue 697 envs = DummyVectorEnv([lambda: gym.make("CartPole-v1") for _ in range(num_envs)]) envs = VectorEnvNormObs(envs) try: obs, info = envs.reset() except ValueError: obs, info = envs.reset(return_info=True) assert isinstance(obs, np.ndarray) assert isinstance(info, np.ndarray) assert isinstance(info[0], dict) assert obs.shape[0] == len(info) == num_envs def run_align_norm_obs( raw_env: DummyVectorEnv, train_env: VectorEnvNormObs, test_env: VectorEnvNormObs, action_list: list[np.ndarray], ) -> None: def reset_result_to_obs(reset_result: tuple[np.ndarray, dict | list[dict]]) -> np.ndarray: """Extract observation from reset result (result is possibly a tuple containing info).""" if isinstance(reset_result, tuple) and len(reset_result) == 2: obs, _ = reset_result else: obs = reset_result # type: ignore return obs eps = np.finfo(np.float32).eps.item() raw_reset_result = raw_env.reset() train_reset_result = train_env.reset() initial_raw_obs = reset_result_to_obs(raw_reset_result) # type: ignore initial_train_obs = reset_result_to_obs(train_reset_result) # type: ignore raw_obs, train_obs = [initial_raw_obs], [initial_train_obs] for action in action_list: step_result = raw_env.step(action) if len(step_result) == 5: obs, rew, terminated, truncated, info = step_result done = np.logical_or(terminated, truncated) else: obs, rew, done, info = step_result # type: ignore raw_obs.append(obs) if np.any(done): reset_result = raw_env.reset(np.where(done)[0]) obs = reset_result_to_obs(reset_result) # type: ignore raw_obs.append(obs) step_result = train_env.step(action) if len(step_result) == 5: obs, rew, terminated, truncated, info = step_result done = np.logical_or(terminated, truncated) else: obs, rew, done, info = step_result # type: ignore train_obs.append(obs) if np.any(done): reset_result = train_env.reset(np.where(done)[0]) obs = reset_result_to_obs(reset_result) # type: ignore train_obs.append(obs) ref_rms = RunningMeanStd() for ro, to in zip(raw_obs, train_obs, strict=True): ref_rms.update(ro) no = (ro - ref_rms.mean) / np.sqrt(ref_rms.var + eps) assert np.allclose(no, to) assert np.allclose(ref_rms.mean, train_env.get_obs_rms().mean) assert np.allclose(ref_rms.var, train_env.get_obs_rms().var) assert np.allclose(ref_rms.mean, test_env.get_obs_rms().mean) assert np.allclose(ref_rms.var, test_env.get_obs_rms().var) reset_result = test_env.reset() obs = reset_result_to_obs(reset_result) # type: ignore test_obs = [obs] for action in action_list: step_result = test_env.step(action) if len(step_result) == 5: obs, rew, terminated, truncated, info = step_result done = np.logical_or(terminated, truncated) else: obs, rew, done, info = step_result # type: ignore test_obs.append(obs) if np.any(done): reset_result = test_env.reset(np.where(done)[0]) obs = reset_result_to_obs(reset_result) # type: ignore test_obs.append(obs) for ro, to in zip(raw_obs, test_obs, strict=True): no = (ro - ref_rms.mean) / np.sqrt(ref_rms.var + eps) assert np.allclose(no, to) def test_venv_norm_obs() -> None: sizes = np.array([5, 10, 15, 20]) action = np.array([1, 1, 1, 1]) total_step = 30 action_list = [action] * total_step env_fns = [lambda i=x: MoveToRightEnv(size=i, array_state=True) for x in sizes] raw = DummyVectorEnv(env_fns) train_env = VectorEnvNormObs(DummyVectorEnv(env_fns)) print(train_env.observation_space) test_env = VectorEnvNormObs(DummyVectorEnv(env_fns), update_obs_rms=False) test_env.set_obs_rms(train_env.get_obs_rms()) run_align_norm_obs(raw, train_env, test_env, action_list) def test_gym_wrappers() -> None: class DummyEnv(gym.Env): def __init__(self) -> None: self.action_space = gym.spaces.Box(low=-1.0, high=2.0, shape=(4,), dtype=np.float32) self.observation_space = gym.spaces.Discrete(2) def step(self, act: Any) -> tuple[Any, Literal[-1], Literal[False], Literal[True], dict]: return self.observation_space.sample(), -1, False, True, {} bsz = 10 action_per_branch = [4, 6, 10, 7] env = DummyEnv() assert isinstance(env.action_space, gym.spaces.Box) original_act = env.action_space.high # convert continous to multidiscrete action space # with different action number per dimension env_m = ContinuousToDiscrete(env, action_per_branch) assert isinstance(env_m.action_space, gym.spaces.MultiDiscrete) # check conversion is working properly for one action np.testing.assert_allclose(env_m.action(env_m.action_space.nvec - 1), original_act) # check conversion is working properly for a batch of actions np.testing.assert_allclose( env_m.action(np.array([env_m.action_space.nvec - 1] * bsz)), np.array([original_act] * bsz), ) # convert multidiscrete with different action number per # dimension to discrete action space env_d = MultiDiscreteToDiscrete(env_m) assert isinstance(env_d.action_space, gym.spaces.Discrete) # check conversion is working properly for one action np.testing.assert_allclose( env_d.action(np.array(env_d.action_space.n - 1)), env_m.action_space.nvec - 1, ) # check conversion is working properly for a batch of actions np.testing.assert_allclose( env_d.action(np.array([env_d.action_space.n - 1] * bsz)), np.array([env_m.action_space.nvec - 1] * bsz), ) # check truncate is True when terminated try: env_t = TruncatedAsTerminated(env) except OSError: env_t = None if env_t is not None: _, _, truncated, _, _ = env_t.step(env_t.action_space.sample()) assert truncated # TODO: old gym envs are no longer supported! Replace by Ant-v4 and fix assoticiated tests @pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform") def test_venv_wrapper_envpool() -> None: raw = envpool.make_gymnasium("Ant-v3", num_envs=4) train = VectorEnvNormObs(envpool.make_gymnasium("Ant-v3", num_envs=4)) test = VectorEnvNormObs(envpool.make_gymnasium("Ant-v3", num_envs=4), update_obs_rms=False) test.set_obs_rms(train.get_obs_rms()) actions = [np.array([raw.action_space.sample() for _ in range(4)]) for i in range(30)] run_align_norm_obs(raw, train, test, actions) @pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform") def test_venv_wrapper_envpool_gym_reset_return_info() -> None: num_envs = 4 env = VectorEnvNormObs( envpool.make_gymnasium("Ant-v3", num_envs=num_envs, gym_reset_return_info=True), ) obs, info = env.reset() assert obs.shape[0] == num_envs # This is not actually unreachable b/c envpool does not return info in the right format if isinstance(info, dict): # type: ignore[unreachable] for _, v in info.items(): # type: ignore[unreachable] if not isinstance(v, dict): assert v.shape[0] == num_envs else: for _info in info: for _, v in _info.items(): if not isinstance(v, dict): assert v.shape[0] == num_envs