# Borrow a lot from openai baselines: # https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py import warnings from collections import deque import cv2 import gymnasium as gym import numpy as np from tianshou.env import ShmemVectorEnv from tianshou.highlevel.env import DiscreteEnvironments, EnvFactory from tianshou.highlevel.trainer import TrainerStopCallback, TrainingContext try: import envpool except ImportError: envpool = None def _parse_reset_result(reset_result): contains_info = ( isinstance(reset_result, tuple) and len(reset_result) == 2 and isinstance(reset_result[1], dict) ) if contains_info: return reset_result[0], reset_result[1], contains_info return reset_result, {}, contains_info class NoopResetEnv(gym.Wrapper): """Sample initial states by taking random number of no-ops on reset. No-op is assumed to be action 0. :param gym.Env env: the environment to wrap. :param int noop_max: the maximum value of no-ops to run. """ def __init__(self, env, noop_max=30): super().__init__(env) self.noop_max = noop_max self.noop_action = 0 assert env.unwrapped.get_action_meanings()[0] == "NOOP" def reset(self, **kwargs): _, info, return_info = _parse_reset_result(self.env.reset(**kwargs)) if hasattr(self.unwrapped.np_random, "integers"): noops = self.unwrapped.np_random.integers(1, self.noop_max + 1) else: noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) for _ in range(noops): step_result = self.env.step(self.noop_action) if len(step_result) == 4: obs, rew, done, info = step_result else: obs, rew, term, trunc, info = step_result done = term or trunc if done: obs, info, _ = _parse_reset_result(self.env.reset()) if return_info: return obs, info return obs class MaxAndSkipEnv(gym.Wrapper): """Return only every `skip`-th frame (frameskipping) using most recent raw observations (for max pooling across time steps). :param gym.Env env: the environment to wrap. :param int skip: number of `skip`-th frame. """ def __init__(self, env, skip=4): super().__init__(env) self._skip = skip def step(self, action): """Step the environment with the given action. Repeat action, sum reward, and max over last observations. """ obs_list, total_reward = [], 0.0 new_step_api = False for _ in range(self._skip): step_result = self.env.step(action) if len(step_result) == 4: obs, reward, done, info = step_result else: obs, reward, term, trunc, info = step_result done = term or trunc new_step_api = True obs_list.append(obs) total_reward += reward if done: break max_frame = np.max(obs_list[-2:], axis=0) if new_step_api: return max_frame, total_reward, term, trunc, info return max_frame, total_reward, done, info class EpisodicLifeEnv(gym.Wrapper): """Make end-of-life == end-of-episode, but only reset on true game over. It helps the value estimation. :param gym.Env env: the environment to wrap. """ def __init__(self, env): super().__init__(env) self.lives = 0 self.was_real_done = True self._return_info = False def step(self, action): step_result = self.env.step(action) if len(step_result) == 4: obs, reward, done, info = step_result new_step_api = False else: obs, reward, term, trunc, info = step_result done = term or trunc new_step_api = True self.was_real_done = done # check current lives, make loss of life terminal, then update lives to # handle bonus lives lives = self.env.unwrapped.ale.lives() if 0 < lives < self.lives: # for Qbert sometimes we stay in lives == 0 condition for a few # frames, so its important to keep lives > 0, so that we only reset # once the environment is actually done. done = True term = True self.lives = lives if new_step_api: return obs, reward, term, trunc, info return obs, reward, done, info def reset(self, **kwargs): """Calls the Gym environment reset, only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.was_real_done: obs, info, self._return_info = _parse_reset_result(self.env.reset(**kwargs)) else: # no-op step to advance from terminal/lost life state step_result = self.env.step(0) obs, info = step_result[0], step_result[-1] self.lives = self.env.unwrapped.ale.lives() if self._return_info: return obs, info return obs class FireResetEnv(gym.Wrapper): """Take action on reset for environments that are fixed until firing. Related discussion: https://github.com/openai/baselines/issues/240. :param gym.Env env: the environment to wrap. """ def __init__(self, env): super().__init__(env) assert env.unwrapped.get_action_meanings()[1] == "FIRE" assert len(env.unwrapped.get_action_meanings()) >= 3 def reset(self, **kwargs): _, _, return_info = _parse_reset_result(self.env.reset(**kwargs)) obs = self.env.step(1)[0] return (obs, {}) if return_info else obs class WarpFrame(gym.ObservationWrapper): """Warp frames to 84x84 as done in the Nature paper and later work. :param gym.Env env: the environment to wrap. """ def __init__(self, env): super().__init__(env) self.size = 84 self.observation_space = gym.spaces.Box( low=np.min(env.observation_space.low), high=np.max(env.observation_space.high), shape=(self.size, self.size), dtype=env.observation_space.dtype, ) def observation(self, frame): """Returns the current observation from a frame.""" frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) return cv2.resize(frame, (self.size, self.size), interpolation=cv2.INTER_AREA) class ScaledFloatFrame(gym.ObservationWrapper): """Normalize observations to 0~1. :param gym.Env env: the environment to wrap. """ def __init__(self, env): super().__init__(env) low = np.min(env.observation_space.low) high = np.max(env.observation_space.high) self.bias = low self.scale = high - low self.observation_space = gym.spaces.Box( low=0.0, high=1.0, shape=env.observation_space.shape, dtype=np.float32, ) def observation(self, observation): return (observation - self.bias) / self.scale class ClipRewardEnv(gym.RewardWrapper): """clips the reward to {+1, 0, -1} by its sign. :param gym.Env env: the environment to wrap. """ def __init__(self, env): super().__init__(env) self.reward_range = (-1, 1) def reward(self, reward): """Bin reward to {+1, 0, -1} by its sign. Note: np.sign(0) == 0.""" return np.sign(reward) class FrameStack(gym.Wrapper): """Stack n_frames last frames. :param gym.Env env: the environment to wrap. :param int n_frames: the number of frames to stack. """ def __init__(self, env, n_frames): super().__init__(env) self.n_frames = n_frames self.frames = deque([], maxlen=n_frames) shape = (n_frames, *env.observation_space.shape) self.observation_space = gym.spaces.Box( low=np.min(env.observation_space.low), high=np.max(env.observation_space.high), shape=shape, dtype=env.observation_space.dtype, ) def reset(self, **kwargs): obs, info, return_info = _parse_reset_result(self.env.reset(**kwargs)) for _ in range(self.n_frames): self.frames.append(obs) return (self._get_ob(), info) if return_info else self._get_ob() def step(self, action): step_result = self.env.step(action) if len(step_result) == 4: obs, reward, done, info = step_result new_step_api = False else: obs, reward, term, trunc, info = step_result new_step_api = True self.frames.append(obs) if new_step_api: return self._get_ob(), reward, term, trunc, info return self._get_ob(), reward, done, info def _get_ob(self): # the original wrapper use `LazyFrames` but since we use np buffer, # it has no effect return np.stack(self.frames, axis=0) def wrap_deepmind( env_id, episode_life=True, clip_rewards=True, frame_stack=4, scale=False, warp_frame=True, ): """Configure environment for DeepMind-style Atari. The observation is channel-first: (c, h, w) instead of (h, w, c). :param str env_id: the atari environment id. :param bool episode_life: wrap the episode life wrapper. :param bool clip_rewards: wrap the reward clipping wrapper. :param int frame_stack: wrap the frame stacking wrapper. :param bool scale: wrap the scaling observation wrapper. :param bool warp_frame: wrap the grayscale + resize observation wrapper. :return: the wrapped atari environment. """ assert "NoFrameskip" in env_id env = gym.make(env_id) env = NoopResetEnv(env, noop_max=30) env = MaxAndSkipEnv(env, skip=4) if episode_life: env = EpisodicLifeEnv(env) if "FIRE" in env.unwrapped.get_action_meanings(): env = FireResetEnv(env) if warp_frame: env = WarpFrame(env) if scale: env = ScaledFloatFrame(env) if clip_rewards: env = ClipRewardEnv(env) if frame_stack: env = FrameStack(env, frame_stack) return env def make_atari_env(task, seed, training_num, test_num, **kwargs): """Wrapper function for Atari env. If EnvPool is installed, it will automatically switch to EnvPool's Atari env. :return: a tuple of (single env, training envs, test envs). """ if envpool is not None: if kwargs.get("scale", 0): warnings.warn( "EnvPool does not include ScaledFloatFrame wrapper, " "please set `x = x / 255.0` inside CNN network's forward function.", ) # parameters convertion train_envs = env = envpool.make_gymnasium( task.replace("NoFrameskip-v4", "-v5"), num_envs=training_num, seed=seed, episodic_life=True, reward_clip=True, stack_num=kwargs.get("frame_stack", 4), ) test_envs = envpool.make_gymnasium( task.replace("NoFrameskip-v4", "-v5"), num_envs=test_num, seed=seed, episodic_life=False, reward_clip=False, stack_num=kwargs.get("frame_stack", 4), ) else: warnings.warn( "Recommend using envpool (pip install envpool) to run Atari games more efficiently.", ) env = wrap_deepmind(task, **kwargs) train_envs = ShmemVectorEnv( [ lambda: wrap_deepmind(task, episode_life=True, clip_rewards=True, **kwargs) for _ in range(training_num) ], ) test_envs = ShmemVectorEnv( [ lambda: wrap_deepmind(task, episode_life=False, clip_rewards=False, **kwargs) for _ in range(test_num) ], ) env.seed(seed) train_envs.seed(seed) test_envs.seed(seed) return env, train_envs, test_envs class AtariEnvFactory(EnvFactory): def __init__(self, task: str, seed: int, frame_stack: int, scale: int = 0): self.task = task self.seed = seed self.frame_stack = frame_stack self.scale = scale def create_envs(self, num_training_envs: int, num_test_envs: int) -> DiscreteEnvironments: env, train_envs, test_envs = make_atari_env( task=self.task, seed=self.seed, training_num=num_training_envs, test_num=num_test_envs, scale=self.scale, frame_stack=self.frame_stack, ) return DiscreteEnvironments(env=env, train_envs=train_envs, test_envs=test_envs) class AtariStopCallback(TrainerStopCallback): def __init__(self, task: str): self.task = task def should_stop(self, mean_rewards: float, context: TrainingContext) -> bool: env = context.envs.env if env.spec.reward_threshold: return mean_rewards >= env.spec.reward_threshold if "Pong" in self.task: return mean_rewards >= 20 return False