import time import numpy as np from torch.utils.tensorboard import SummaryWriter from typing import Dict, List, Union, Callable, Optional from tianshou.data import Collector from tianshou.policy import BasePolicy def test_episode( policy: BasePolicy, collector: Collector, test_fn: Optional[Callable[[int], None]], epoch: int, n_episode: Union[int, List[int]], writer: Optional[SummaryWriter] = None, global_step: Optional[int] = None, ) -> Dict[str, float]: """A simple wrapper of testing policy in collector.""" collector.reset_env() collector.reset_buffer() policy.eval() if test_fn: test_fn(epoch) if collector.get_env_num() > 1 and np.isscalar(n_episode): n = collector.get_env_num() n_ = np.zeros(n) + n_episode // n n_[:n_episode % n] += 1 n_episode = list(n_) result = collector.collect(n_episode=n_episode) if writer is not None and global_step is not None: for k in result.keys(): writer.add_scalar("test/" + k, result[k], global_step=global_step) return result def gather_info( start_time: float, train_c: Collector, test_c: Collector, best_reward: float, ) -> Dict[str, Union[float, str]]: """A simple wrapper of gathering information from collectors. :return: A dictionary with the following keys: * ``train_step`` the total collected step of training collector; * ``train_episode`` the total collected episode of training collector; * ``train_time/collector`` the time for collecting frames in the \ training collector; * ``train_time/model`` the time for training models; * ``train_speed`` the speed of training (frames per second); * ``test_step`` the total collected step of test collector; * ``test_episode`` the total collected episode of test collector; * ``test_time`` the time for testing; * ``test_speed`` the speed of testing (frames per second); * ``best_reward`` the best reward over the test results; * ``duration`` the total elapsed time. """ duration = time.time() - start_time model_time = duration - train_c.collect_time - test_c.collect_time train_speed = train_c.collect_step / (duration - test_c.collect_time) test_speed = test_c.collect_step / test_c.collect_time return { "train_step": train_c.collect_step, "train_episode": train_c.collect_episode, "train_time/collector": f"{train_c.collect_time:.2f}s", "train_time/model": f"{model_time:.2f}s", "train_speed": f"{train_speed:.2f} step/s", "test_step": test_c.collect_step, "test_episode": test_c.collect_episode, "test_time": f"{test_c.collect_time:.2f}s", "test_speed": f"{test_speed:.2f} step/s", "best_reward": best_reward, "duration": f"{duration:.2f}s", }