import torch import numpy as np from torch import nn from typing import Any, Dict, Tuple, Union, Optional, Sequence class DQN(nn.Module): """Reference: Human-level control through deep reinforcement learning. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, c: int, h: int, w: int, action_shape: Sequence[int], device: Union[str, int, torch.device] = "cpu", features_only: bool = False, ) -> None: super().__init__() self.device = device self.net = nn.Sequential( nn.Conv2d(c, 32, kernel_size=8, stride=4), nn.ReLU(inplace=True), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(inplace=True), nn.Flatten()) with torch.no_grad(): self.output_dim = np.prod( self.net(torch.zeros(1, c, h, w)).shape[1:]) if not features_only: self.net = nn.Sequential( self.net, nn.Linear(self.output_dim, 512), nn.ReLU(inplace=True), nn.Linear(512, np.prod(action_shape))) self.output_dim = np.prod(action_shape) def forward( self, x: Union[np.ndarray, torch.Tensor], state: Optional[Any] = None, info: Dict[str, Any] = {}, ) -> Tuple[torch.Tensor, Any]: r"""Mapping: x -> Q(x, \*).""" x = torch.as_tensor(x, device=self.device, dtype=torch.float32) return self.net(x), state class C51(DQN): """Reference: A distributional perspective on reinforcement learning. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, c: int, h: int, w: int, action_shape: Sequence[int], num_atoms: int = 51, device: Union[str, int, torch.device] = "cpu", ) -> None: self.action_num = np.prod(action_shape) super().__init__(c, h, w, [self.action_num * num_atoms], device) self.num_atoms = num_atoms def forward( self, x: Union[np.ndarray, torch.Tensor], state: Optional[Any] = None, info: Dict[str, Any] = {}, ) -> Tuple[torch.Tensor, Any]: r"""Mapping: x -> Z(x, \*).""" x, state = super().forward(x) x = x.view(-1, self.num_atoms).softmax(dim=-1) x = x.view(-1, self.action_num, self.num_atoms) return x, state class QRDQN(DQN): """Reference: Distributional Reinforcement Learning with Quantile \ Regression. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, c: int, h: int, w: int, action_shape: Sequence[int], num_quantiles: int = 200, device: Union[str, int, torch.device] = "cpu", ) -> None: self.action_num = np.prod(action_shape) super().__init__(c, h, w, [self.action_num * num_quantiles], device) self.num_quantiles = num_quantiles def forward( self, x: Union[np.ndarray, torch.Tensor], state: Optional[Any] = None, info: Dict[str, Any] = {}, ) -> Tuple[torch.Tensor, Any]: r"""Mapping: x -> Z(x, \*).""" x, state = super().forward(x) x = x.view(-1, self.action_num, self.num_quantiles) return x, state