import os import gym import torch import pprint import argparse import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.policy import PPOPolicy from tianshou.utils import BasicLogger from tianshou.env import DummyVectorEnv from tianshou.utils.net.common import Net from tianshou.trainer import onpolicy_trainer from tianshou.data import Collector, VectorReplayBuffer from tianshou.utils.net.discrete import Actor, Critic def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='CartPole-v0') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--buffer-size', type=int, default=20000) parser.add_argument('--lr', type=float, default=3e-4) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--epoch', type=int, default=10) parser.add_argument('--step-per-epoch', type=int, default=50000) parser.add_argument('--step-per-collect', type=int, default=2000) parser.add_argument('--repeat-per-collect', type=int, default=10) parser.add_argument('--batch-size', type=int, default=64) parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64]) parser.add_argument('--training-num', type=int, default=20) parser.add_argument('--test-num', type=int, default=100) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') # ppo special parser.add_argument('--vf-coef', type=float, default=0.5) parser.add_argument('--ent-coef', type=float, default=0.0) parser.add_argument('--eps-clip', type=float, default=0.2) parser.add_argument('--max-grad-norm', type=float, default=0.5) parser.add_argument('--gae-lambda', type=float, default=0.95) parser.add_argument('--rew-norm', type=int, default=0) parser.add_argument('--norm-adv', type=int, default=0) parser.add_argument('--recompute-adv', type=int, default=0) parser.add_argument('--dual-clip', type=float, default=None) parser.add_argument('--value-clip', type=int, default=0) args = parser.parse_known_args()[0] return args def test_ppo(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # train_envs = gym.make(args.task) # you can also use tianshou.env.SubprocVectorEnv train_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) actor = Actor(net, args.action_shape, device=args.device).to(args.device) critic = Critic(net, device=args.device).to(args.device) # orthogonal initialization for m in set(actor.modules()).union(critic.modules()): if isinstance(m, torch.nn.Linear): torch.nn.init.orthogonal_(m.weight) torch.nn.init.zeros_(m.bias) optim = torch.optim.Adam( set(actor.parameters()).union(critic.parameters()), lr=args.lr) dist = torch.distributions.Categorical policy = PPOPolicy( actor, critic, optim, dist, discount_factor=args.gamma, max_grad_norm=args.max_grad_norm, eps_clip=args.eps_clip, vf_coef=args.vf_coef, ent_coef=args.ent_coef, gae_lambda=args.gae_lambda, reward_normalization=args.rew_norm, dual_clip=args.dual_clip, value_clip=args.value_clip, action_space=env.action_space, deterministic_eval=True, advantage_normalization=args.norm_adv, recompute_advantage=args.recompute_adv) # collector train_collector = Collector( policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs))) test_collector = Collector(policy, test_envs) # log log_path = os.path.join(args.logdir, args.task, 'ppo') writer = SummaryWriter(log_path) logger = BasicLogger(writer) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= env.spec.reward_threshold # trainer result = onpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.repeat_per_collect, args.test_num, args.batch_size, step_per_collect=args.step_per_collect, stop_fn=stop_fn, save_fn=save_fn, logger=logger) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) rews, lens = result["rews"], result["lens"] print(f"Final reward: {rews.mean()}, length: {lens.mean()}") if __name__ == '__main__': test_ppo()