#!/usr/bin/env python import tensorflow as tf import gym # our lib imports here! import sys sys.path.append('..') import tianshou.core.losses as losses from tianshou.data.replay_buffer.utils import get_replay_buffer import tianshou.core.policy.dqn as policy # THIS EXAMPLE IS NOT FINISHED YET!!! def policy_net(observation, action_dim): """ Constructs the policy network. NOT NEEDED IN THE LIBRARY! this is pure tf :param observation: Placeholder for the observation. A tensor of shape (bs, x, y, channels) :param action_dim: int. The number of actions. :param scope: str. Specifying the scope of the variables. """ net = tf.layers.conv2d(observation, 16, 8, 4, 'valid', activation=tf.nn.relu) net = tf.layers.conv2d(net, 32, 4, 2, 'valid', activation=tf.nn.relu) net = tf.layers.flatten(net) net = tf.layers.dense(net, 256, activation=tf.nn.relu) q_values = tf.layers.dense(net, action_dim) return q_values if __name__ == '__main__': env = gym.make('PongNoFrameskip-v4') observation_dim = env.observation_space.shape action_dim = env.action_space.n # 1. build network with pure tf # TODO: # pass the observation variable to the replay buffer or find a more reasonable way to help replay buffer # access this observation variable. observation = tf.placeholder(tf.float32, shape=(None,) + observation_dim, name="dqn_observation") # network input action = tf.placeholder(dtype=tf.int32, shape=(None,)) # batch of integer actions with tf.variable_scope('q_net'): q_values = policy_net(observation, action_dim) with tf.variable_scope('target_net'): q_values_target = policy_net(observation, action_dim) # 2. build losses, optimizers q_net = policy.DQNRefactor(q_values, observation_placeholder=observation, action_placeholder=action) # YongRen: policy.DQN target_net = policy.DQNRefactor(q_values_target, observation_placeholder=observation, action_placeholder=action) target = tf.placeholder(dtype=tf.float32, shape=[None]) # target value for DQN dqn_loss = losses.dqn_loss(action, target, q_net) # TongzhengRen global_step = tf.Variable(0, name='global_step', trainable=False) train_var_list = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES) # TODO: better management of TRAINABLE_VARIABLES total_loss = dqn_loss optimizer = tf.train.AdamOptimizer(1e-3) train_op = optimizer.minimize(total_loss, var_list=train_var_list, global_step=tf.train.get_global_step()) # 3. define data collection # configuration should be given as parameters, different replay buffer has different parameters. replay_memory = get_replay_buffer('rank_based', env, q_values, q_net, target_net, {'size': 1000, 'batch_size': 64, 'learn_start': 20}) # ShihongSong: Replay(env, q_net, advantage_estimation.qlearning_target(target_network)), use your ReplayMemory, interact as follows. Simplify your advantage_estimation.dqn to run before YongRen's DQN # maybe a dict to manage the elements to be collected # 4. start training with tf.Session() as sess: sess.run(tf.global_variables_initializer()) minibatch_count = 0 collection_count = 0 # need to first collect some then sample, collect_freq must be larger than batch_size collect_freq = 100 while True: # until some stopping criterion met... # collect data for i in range(0, collect_freq): replay_memory.collect() # ShihongSong collection_count += 1 print('Collected {} times.'.format(collection_count)) # update network data = replay_memory.next_batch(10) # YouQiaoben, ShihongSong # TODO: auto managing of the placeholders? or add this to params of data.Batch sess.run(train_op, feed_dict={observation: data['observations'], action: data['actions'], target: data['target']}) minibatch_count += 1 print('Trained {} minibatches.'.format(minibatch_count)) # TODO: assigning pi to pi_old is not implemented yet