import numpy as np import math import time c_puct = 5 class MCTSNode(object): def __init__(self, parent, action, state, action_num, prior): self.parent = parent self.action = action self.children = {} self.state = state self.action_num = action_num self.prior = prior def selection(self, simulator): raise NotImplementedError("Need to implement function selection") def backpropagation(self, action): raise NotImplementedError("Need to implement function backpropagation") def simulation(self, state, evaluator): raise NotImplementedError("Need to implement function simulation") class UCTNode(MCTSNode): def __init__(self, parent, action, state, action_num, prior): super(UCTNode, self).__init__(parent, action, state, action_num, prior) self.Q = np.zeros([action_num]) self.W = np.zeros([action_num]) self.N = np.zeros([action_num]) self.ucb = self.Q + c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1) def selection(self, simulator): action = np.argmax(self.ucb) if action in self.children.keys(): return self.children[action].selection(simulator) else: self.children[action] = ActionNode(self, action) return self.children[action].selection(simulator) def backpropagation(self, action): action = int(action) self.N[action] += 1 self.W[action] += self.children[action].reward for i in range(self.action_num): if self.N[i] != 0: self.Q[i] = (self.W[i] + 0.) / self.N[i] self.ucb = self.Q + c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1.) if self.parent is not None: self.parent.backpropagation(self.children[action].reward) def simulation(self, evaluator, state): value = evaluator(state) return value class TSNode(MCTSNode): def __init__(self, parent, action, state, action_num, prior, method="Gaussian"): super(TSNode, self).__init__(parent, action, state, action_num, prior) if method == "Beta": self.alpha = np.ones([action_num]) self.beta = np.ones([action_num]) if method == "Gaussian": self.mu = np.zeros([action_num]) self.sigma = np.zeros([action_num]) class ActionNode: def __init__(self, parent, action): self.parent = parent self.action = action self.children = {} self.next_state = None self.reward = 0 def selection(self, simulator): self.next_state, self.reward = simulator.step_forward(self.parent.state, self.action) if self.next_state is not None: if self.next_state in self.children.keys(): return self.children[self.next_state].selection(simulator) else: return self.parent, self.action else: return self.parent, self.action def expansion(self, action_num): # TODO: Let users/evaluator give the prior if self.next_state is not None: prior = np.ones([action_num]) / action_num self.children[self.next_state] = UCTNode(self, self.action, self.next_state, action_num, prior) return True else: return False def backpropagation(self, value): self.reward += value self.parent.backpropagation(self.action) class MCTS: def __init__(self, simulator, evaluator, root, action_num, prior, method="UCT", max_step=None, max_time=None): self.simulator = simulator self.evaluator = evaluator self.action_num = action_num if method == "UCT": self.root = UCTNode(None, None, root, action_num, prior) if method == "TS": self.root = TSNode(None, None, root, action_num, prior) if max_step is not None: self.step = 0 self.max_step = max_step if max_time is not None: self.start_time = time.time() self.max_time = max_time if max_step is None and max_time is None: raise ValueError("Need a stop criteria!") while (max_step is not None and self.step < self.max_step or max_step is None) \ and (max_time is not None and time.time() - self.start_time < self.max_time or max_time is None): print("Q={}".format(self.root.Q)) print("N={}".format(self.root.N)) print("W={}".format(self.root.W)) print("UCB={}".format(self.root.ucb)) print("\n") self.expand() if max_step is not None: self.step += 1 def expand(self): node, new_action = self.root.selection(self.simulator) success = node.children[new_action].expansion(self.action_num) if success: value = node.simulation(self.evaluator, node.children[new_action].next_state) node.children[new_action].backpropagation(value + 0.) else: node.children[new_action].backpropagation(0.) if __name__ == "__main__": pass