import argparse import datetime import os import pickle import pprint import numpy as np import torch from atari_network import DQN from atari_wrapper import wrap_deepmind from torch.utils.tensorboard import SummaryWriter from tianshou.data import Collector, VectorReplayBuffer from tianshou.env import ShmemVectorEnv from tianshou.policy import DiscreteBCQPolicy from tianshou.trainer import offline_trainer from tianshou.utils import TensorboardLogger from tianshou.utils.net.discrete import Actor def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="PongNoFrameskip-v4") parser.add_argument("--seed", type=int, default=1626) parser.add_argument("--eps-test", type=float, default=0.001) parser.add_argument("--lr", type=float, default=6.25e-5) parser.add_argument("--gamma", type=float, default=0.99) parser.add_argument("--n-step", type=int, default=1) parser.add_argument("--target-update-freq", type=int, default=8000) parser.add_argument("--unlikely-action-threshold", type=float, default=0.3) parser.add_argument("--imitation-logits-penalty", type=float, default=0.01) parser.add_argument("--epoch", type=int, default=100) parser.add_argument("--update-per-epoch", type=int, default=10000) parser.add_argument("--batch-size", type=int, default=32) parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[512]) parser.add_argument("--test-num", type=int, default=10) parser.add_argument('--frames-stack', type=int, default=4) parser.add_argument("--logdir", type=str, default="log") parser.add_argument("--render", type=float, default=0.) parser.add_argument("--resume-path", type=str, default=None) parser.add_argument( "--watch", default=False, action="store_true", help="watch the play of pre-trained policy only" ) parser.add_argument("--log-interval", type=int, default=100) parser.add_argument( "--load-buffer-name", type=str, default="./expert_DQN_PongNoFrameskip-v4.hdf5" ) parser.add_argument( "--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu" ) args = parser.parse_known_args()[0] return args def make_atari_env(args): return wrap_deepmind(args.task, frame_stack=args.frames_stack) def make_atari_env_watch(args): return wrap_deepmind( args.task, frame_stack=args.frames_stack, episode_life=False, clip_rewards=False ) def test_discrete_bcq(args=get_args()): # envs env = make_atari_env(args) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # should be N_FRAMES x H x W print("Observations shape:", args.state_shape) print("Actions shape:", args.action_shape) # make environments test_envs = ShmemVectorEnv( [lambda: make_atari_env_watch(args) for _ in range(args.test_num)] ) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) test_envs.seed(args.seed) # model feature_net = DQN( *args.state_shape, args.action_shape, device=args.device, features_only=True ).to(args.device) policy_net = Actor( feature_net, args.action_shape, device=args.device, hidden_sizes=args.hidden_sizes, softmax_output=False ).to(args.device) imitation_net = Actor( feature_net, args.action_shape, device=args.device, hidden_sizes=args.hidden_sizes, softmax_output=False ).to(args.device) optim = torch.optim.Adam( list(policy_net.parameters()) + list(imitation_net.parameters()), lr=args.lr ) # define policy policy = DiscreteBCQPolicy( policy_net, imitation_net, optim, args.gamma, args.n_step, args.target_update_freq, args.eps_test, args.unlikely_action_threshold, args.imitation_logits_penalty ) # load a previous policy if args.resume_path: policy.load_state_dict(torch.load(args.resume_path, map_location=args.device)) print("Loaded agent from: ", args.resume_path) # buffer assert os.path.exists(args.load_buffer_name), \ "Please run atari_dqn.py first to get expert's data buffer." if args.load_buffer_name.endswith('.pkl'): buffer = pickle.load(open(args.load_buffer_name, "rb")) elif args.load_buffer_name.endswith('.hdf5'): buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name) else: print(f"Unknown buffer format: {args.load_buffer_name}") exit(0) # collector test_collector = Collector(policy, test_envs, exploration_noise=True) # log log_path = os.path.join( args.logdir, args.task, 'bcq', f'seed_{args.seed}_{datetime.datetime.now().strftime("%m%d-%H%M%S")}' ) writer = SummaryWriter(log_path) writer.add_text("args", str(args)) logger = TensorboardLogger(writer, update_interval=args.log_interval) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return False # watch agent's performance def watch(): print("Setup test envs ...") policy.eval() policy.set_eps(args.eps_test) test_envs.seed(args.seed) print("Testing agent ...") test_collector.reset() result = test_collector.collect(n_episode=args.test_num, render=args.render) pprint.pprint(result) rew = result["rews"].mean() print(f'Mean reward (over {result["n/ep"]} episodes): {rew}') if args.watch: watch() exit(0) result = offline_trainer( policy, buffer, test_collector, args.epoch, args.update_per_epoch, args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, logger=logger ) pprint.pprint(result) watch() if __name__ == "__main__": test_discrete_bcq(get_args())