import torch import numpy as np from copy import deepcopy import torch.nn.functional as F from tianshou.policy import DDPGPolicy class TD3Policy(DDPGPolicy): """docstring for TD3Policy""" def __init__(self, actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, tau=0.005, gamma=0.99, exploration_noise=0.1, policy_noise=0.2, update_actor_freq=2, noise_clip=0.5, action_range=None, reward_normalization=True): super().__init__(actor, actor_optim, None, None, tau, gamma, exploration_noise, action_range, reward_normalization) self.critic1, self.critic1_old = critic1, deepcopy(critic1) self.critic1_old.eval() self.critic1_optim = critic1_optim self.critic2, self.critic2_old = critic2, deepcopy(critic2) self.critic2_old.eval() self.critic2_optim = critic2_optim self._policy_noise = policy_noise self._freq = update_actor_freq self._noise_clip = noise_clip self._cnt = 0 self._last = 0 self.__eps = np.finfo(np.float32).eps.item() def train(self): self.training = True self.actor.train() self.critic1.train() self.critic2.train() def eval(self): self.training = False self.actor.eval() self.critic1.eval() self.critic2.eval() def sync_weight(self): for o, n in zip(self.actor_old.parameters(), self.actor.parameters()): o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau) for o, n in zip( self.critic1_old.parameters(), self.critic1.parameters()): o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau) for o, n in zip( self.critic2_old.parameters(), self.critic2.parameters()): o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau) def learn(self, batch, batch_size=None, repeat=1): a_ = self(batch, model='actor_old', input='obs_next').act dev = a_.device noise = torch.randn(size=a_.shape, device=dev) * self._policy_noise if self._noise_clip >= 0: noise = noise.clamp(-self._noise_clip, self._noise_clip) a_ += noise a_ = a_.clamp(self._range[0], self._range[1]) target_q = torch.min( self.critic1_old(batch.obs_next, a_), self.critic2_old(batch.obs_next, a_)) rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)[:, None] if self._rew_norm: rew = (rew - self._rew_mean) / (self._rew_std + self.__eps) done = torch.tensor(batch.done, dtype=torch.float, device=dev)[:, None] target_q = rew + ((1. - done) * self._gamma * target_q).detach() # critic 1 current_q1 = self.critic1(batch.obs, batch.act) critic1_loss = F.mse_loss(current_q1, target_q) self.critic1_optim.zero_grad() critic1_loss.backward() self.critic1_optim.step() # critic 2 current_q2 = self.critic2(batch.obs, batch.act) critic2_loss = F.mse_loss(current_q2, target_q) self.critic2_optim.zero_grad() critic2_loss.backward() self.critic2_optim.step() if self._cnt % self._freq == 0: actor_loss = -self.critic1( batch.obs, self(batch, eps=0).act).mean() self.actor_optim.zero_grad() actor_loss.backward() self._last = actor_loss.detach().cpu().numpy() self.actor_optim.step() self.sync_weight() self._cnt += 1 return { 'loss/actor': self._last, 'loss/critic1': critic1_loss.detach().cpu().numpy(), 'loss/critic2': critic2_loss.detach().cpu().numpy(), }