#!/usr/bin/env python from __future__ import absolute_import import tensorflow as tf import gym import numpy as np import time import argparse import tianshou as ts if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--render", action="store_true", default=False) args = parser.parse_args() env = gym.make('Pendulum-v0') observation_dim = env.observation_space.shape action_dim = env.action_space.shape batch_size = 32 seed = 123 np.random.seed(seed) tf.set_random_seed(seed) env.seed(seed) ### 1. build network with pure tf observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim) action_ph = tf.placeholder(tf.float32, shape=(None,) + action_dim) def my_network(): net = tf.layers.dense(observation_ph, 32, activation=tf.nn.relu) net = tf.layers.dense(net, 32, activation=tf.nn.relu) action = tf.layers.dense(net, action_dim[0], activation=None) action_value_input = tf.concat([observation_ph, action_ph], axis=1) net = tf.layers.dense(action_value_input, 64, activation=tf.nn.relu) net = tf.layers.dense(net, 64, activation=tf.nn.relu) action_value = tf.layers.dense(net, 1, activation=None) return action, action_value ### 2. build policy, loss, optimizer actor = ts.policy.Deterministic(my_network, observation_placeholder=observation_ph, has_old_net=True) critic = ts.value_function.ActionValue(my_network, observation_placeholder=observation_ph, action_placeholder=action_ph, has_old_net=True) soft_update_op = ts.get_soft_update_op(1e-2, [actor, critic]) critic_loss = ts.losses.value_mse(critic) critic_optimizer = tf.train.AdamOptimizer(1e-3) critic_train_op = critic_optimizer.minimize(critic_loss, var_list=list(critic.trainable_variables)) dpg_grads_vars = ts.opt.DPG(actor, critic) actor_optimizer = tf.train.AdamOptimizer(1e-3) actor_train_op = actor_optimizer.apply_gradients(dpg_grads_vars) ### 3. define data collection data_buffer = ts.data.VanillaReplayBuffer(capacity=10000, nstep=1) process_functions = [ts.data.advantage_estimation.ddpg_return(actor, critic)] data_collector = ts.data.DataCollector( env=env, policy=actor, data_buffer=data_buffer, process_functions=process_functions, managed_networks=[actor, critic] ) ### 4. start training config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) # assign actor to pi_old actor.sync_weights() critic.sync_weights() start_time = time.time() data_collector.collect(num_timesteps=5000) # warm-up for i in range(int(1e8)): # collect data data_collector.collect(num_timesteps=1, episode_cutoff=200) # train critic feed_dict = data_collector.next_batch(batch_size) sess.run(critic_train_op, feed_dict=feed_dict) # recompute action data_collector.denoise_action(feed_dict) # train actor sess.run(actor_train_op, feed_dict=feed_dict) # update target networks sess.run(soft_update_op) # test every 1000 training steps if i % 1000 == 0: print('Step {}, elapsed time: {:.1f} min'.format(i, (time.time() - start_time) / 60)) ts.data.test_policy_in_env(actor, env, num_episodes=5, episode_cutoff=200)