import torch import numpy as np from torch import nn from typing import Any, Dict, List, Type, Tuple, Union, Optional from tianshou.policy import PGPolicy from tianshou.data import Batch, ReplayBuffer, to_numpy, to_torch_as class PPOPolicy(PGPolicy): r"""Implementation of Proximal Policy Optimization. arXiv:1707.06347. :param torch.nn.Module actor: the actor network following the rules in :class:`~tianshou.policy.BasePolicy`. (s -> logits) :param torch.nn.Module critic: the critic network. (s -> V(s)) :param torch.optim.Optimizer optim: the optimizer for actor and critic network. :param dist_fn: distribution class for computing the action. :type dist_fn: Type[torch.distributions.Distribution] :param float discount_factor: in [0, 1]. Default to 0.99. :param float max_grad_norm: clipping gradients in back propagation. Default to None. :param float eps_clip: :math:`\epsilon` in :math:`L_{CLIP}` in the original paper. Default to 0.2. :param float vf_coef: weight for value loss. Default to 0.5. :param float ent_coef: weight for entropy loss. Default to 0.01. :param action_range: the action range (minimum, maximum). :type action_range: (float, float) :param float gae_lambda: in [0, 1], param for Generalized Advantage Estimation. Default to 0.95. :param float dual_clip: a parameter c mentioned in arXiv:1912.09729 Equ. 5, where c > 1 is a constant indicating the lower bound. Default to 5.0 (set None if you do not want to use it). :param bool value_clip: a parameter mentioned in arXiv:1811.02553 Sec. 4.1. Default to True. :param bool reward_normalization: normalize the returns to Normal(0, 1). Default to True. :param int max_batchsize: the maximum size of the batch when computing GAE, depends on the size of available memory and the memory cost of the model; should be as large as possible within the memory constraint. Default to 256. .. seealso:: Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed explanation. """ def __init__( self, actor: torch.nn.Module, critic: torch.nn.Module, optim: torch.optim.Optimizer, dist_fn: Type[torch.distributions.Distribution], discount_factor: float = 0.99, max_grad_norm: Optional[float] = None, eps_clip: float = 0.2, vf_coef: float = 0.5, ent_coef: float = 0.01, action_range: Optional[Tuple[float, float]] = None, gae_lambda: float = 0.95, dual_clip: Optional[float] = None, value_clip: bool = True, reward_normalization: bool = True, max_batchsize: int = 256, **kwargs: Any, ) -> None: super().__init__(None, optim, dist_fn, discount_factor, **kwargs) self._max_grad_norm = max_grad_norm self._eps_clip = eps_clip self._weight_vf = vf_coef self._weight_ent = ent_coef self._range = action_range self.actor = actor self.critic = critic self._batch = max_batchsize assert 0.0 <= gae_lambda <= 1.0, "GAE lambda should be in [0, 1]." self._lambda = gae_lambda assert dual_clip is None or dual_clip > 1.0, \ "Dual-clip PPO parameter should greater than 1.0." self._dual_clip = dual_clip self._value_clip = value_clip self._rew_norm = reward_normalization def process_fn( self, batch: Batch, buffer: ReplayBuffer, indice: np.ndarray ) -> Batch: if self._rew_norm: mean, std = batch.rew.mean(), batch.rew.std() if not np.isclose(std, 0.0, 1e-2): batch.rew = (batch.rew - mean) / std v, v_, old_log_prob = [], [], [] with torch.no_grad(): for b in batch.split(self._batch, shuffle=False, merge_last=True): v_.append(self.critic(b.obs_next)) v.append(self.critic(b.obs)) old_log_prob.append(self(b).dist.log_prob(to_torch_as(b.act, v[0]))) v_ = to_numpy(torch.cat(v_, dim=0)) batch = self.compute_episodic_return( batch, buffer, indice, v_, gamma=self._gamma, gae_lambda=self._lambda, rew_norm=self._rew_norm) batch.v = torch.cat(v, dim=0).flatten() # old value batch.act = to_torch_as(batch.act, v[0]) batch.logp_old = torch.cat(old_log_prob, dim=0) batch.returns = to_torch_as(batch.returns, v[0]) batch.adv = batch.returns - batch.v if self._rew_norm: mean, std = batch.adv.mean(), batch.adv.std() if not np.isclose(std.item(), 0.0, 1e-2): batch.adv = (batch.adv - mean) / std return batch def forward( self, batch: Batch, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> Batch: """Compute action over the given batch data. :return: A :class:`~tianshou.data.Batch` which has 4 keys: * ``act`` the action. * ``logits`` the network's raw output. * ``dist`` the action distribution. * ``state`` the hidden state. .. seealso:: Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for more detailed explanation. """ logits, h = self.actor(batch.obs, state=state, info=batch.info) if isinstance(logits, tuple): dist = self.dist_fn(*logits) else: dist = self.dist_fn(logits) act = dist.sample() if self._range: act = act.clamp(self._range[0], self._range[1]) return Batch(logits=logits, act=act, state=h, dist=dist) def learn( # type: ignore self, batch: Batch, batch_size: int, repeat: int, **kwargs: Any ) -> Dict[str, List[float]]: losses, clip_losses, vf_losses, ent_losses = [], [], [], [] for _ in range(repeat): for b in batch.split(batch_size, merge_last=True): dist = self(b).dist value = self.critic(b.obs).flatten() ratio = (dist.log_prob(b.act) - b.logp_old).exp().float() ratio = ratio.reshape(ratio.size(0), -1).transpose(0, 1) surr1 = ratio * b.adv surr2 = ratio.clamp(1.0 - self._eps_clip, 1.0 + self._eps_clip) * b.adv if self._dual_clip: clip_loss = -torch.max( torch.min(surr1, surr2), self._dual_clip * b.adv ).mean() else: clip_loss = -torch.min(surr1, surr2).mean() clip_losses.append(clip_loss.item()) if self._value_clip: v_clip = b.v + (value - b.v).clamp(-self._eps_clip, self._eps_clip) vf1 = (b.returns - value).pow(2) vf2 = (b.returns - v_clip).pow(2) vf_loss = 0.5 * torch.max(vf1, vf2).mean() else: vf_loss = 0.5 * (b.returns - value).pow(2).mean() vf_losses.append(vf_loss.item()) e_loss = dist.entropy().mean() ent_losses.append(e_loss.item()) loss = clip_loss + self._weight_vf * vf_loss \ - self._weight_ent * e_loss losses.append(loss.item()) self.optim.zero_grad() loss.backward() if self._max_grad_norm: nn.utils.clip_grad_norm_( list(self.actor.parameters()) + list(self.critic.parameters()), self._max_grad_norm) self.optim.step() return { "loss": losses, "loss/clip": clip_losses, "loss/vf": vf_losses, "loss/ent": ent_losses, }