import torch import copy import pprint import warnings import numpy as np from typing import Any, List, Union, Iterator, Optional # Disable pickle warning related to torch, since it has been removed # on torch master branch. See Pull Request #39003 for details: # https://github.com/pytorch/pytorch/pull/39003 warnings.filterwarnings( "ignore", message="pickle support for Storage will be removed in 1.5.") class Batch: """Tianshou provides :class:`~tianshou.data.Batch` as the internal data structure to pass any kind of data to other methods, for example, a collector gives a :class:`~tianshou.data.Batch` to policy for learning. Here is the usage: :: >>> import numpy as np >>> from tianshou.data import Batch >>> data = Batch(a=4, b=[5, 5], c='2312312') >>> data.b [5, 5] >>> data.b = np.array([3, 4, 5]) >>> print(data) Batch( a: 4, b: array([3, 4, 5]), c: '2312312', ) In short, you can define a :class:`Batch` with any key-value pair. The current implementation of Tianshou typically use 7 reserved keys in :class:`~tianshou.data.Batch`: * ``obs`` the observation of step :math:`t` ; * ``act`` the action of step :math:`t` ; * ``rew`` the reward of step :math:`t` ; * ``done`` the done flag of step :math:`t` ; * ``obs_next`` the observation of step :math:`t+1` ; * ``info`` the info of step :math:`t` (in ``gym.Env``, the ``env.step()``\ function return 4 arguments, and the last one is ``info``); * ``policy`` the data computed by policy in step :math:`t`; :class:`~tianshou.data.Batch` has other methods, including :meth:`~tianshou.data.Batch.__getitem__`, :meth:`~tianshou.data.Batch.__len__`, :meth:`~tianshou.data.Batch.append`, and :meth:`~tianshou.data.Batch.split`: :: >>> data = Batch(obs=np.array([0, 11, 22]), rew=np.array([6, 6, 6])) >>> # here we test __getitem__ >>> index = [2, 1] >>> data[index].obs array([22, 11]) >>> # here we test __len__ >>> len(data) 3 >>> data.append(data) # similar to list.append >>> data.obs array([0, 11, 22, 0, 11, 22]) >>> # split whole data into multiple small batch >>> for d in data.split(size=2, shuffle=False): ... print(d.obs, d.rew) [ 0 11] [6 6] [22 0] [6 6] [11 22] [6 6] """ def __init__(self, batch_dict: Optional[ Union[dict, List[dict], np.ndarray]] = None, **kwargs) -> None: if isinstance(batch_dict, (list, np.ndarray)) \ and len(batch_dict) > 0 and isinstance(batch_dict[0], dict): for k, v in zip(batch_dict[0].keys(), zip(*[e.values() for e in batch_dict])): if isinstance(v, (list, np.ndarray)) \ and len(v) > 0 and isinstance(v[0], dict): self.__dict__[k] = Batch.stack([Batch(v_) for v_ in v]) elif isinstance(v[0], np.ndarray): self.__dict__[k] = np.stack(v, axis=0) elif isinstance(v[0], torch.Tensor): self.__dict__[k] = torch.stack(v, dim=0) elif isinstance(v[0], Batch): self.__dict__[k] = Batch.stack(v) elif isinstance(v[0], dict): self.__dict__[k] = Batch(v) else: self.__dict__[k] = list(v) elif isinstance(batch_dict, dict): for k, v in batch_dict.items(): if isinstance(v, dict) \ or (isinstance(v, (list, np.ndarray)) and len(v) > 0 and isinstance(v[0], dict)): self.__dict__[k] = Batch(v) else: self.__dict__[k] = v if len(kwargs) > 0: self.__init__(kwargs) def __getstate__(self): """Pickling interface. Only the actual data are serialized for both efficiency and simplicity. """ state = {} for k in self.keys(): v = self[k] if isinstance(v, Batch): v = v.__getstate__() state[k] = v return state def __setstate__(self, state): """Unpickling interface. At this point, self is an empty Batch instance that has not been initialized, so it can safely be initialized by the pickle state. """ self.__init__(**state) def __getitem__(self, index: Union[str, slice]) -> Union['Batch', dict]: """Return self[index].""" if isinstance(index, str): return self.__getattr__(index) b = Batch() for k, v in self.__dict__.items(): if hasattr(v, '__len__'): try: b.__dict__.update(**{k: v[index]}) except IndexError: continue return b def __getattr__(self, key: str) -> Union['Batch', Any]: """Return self.key""" if key not in self.__dict__: raise AttributeError(key) return self.__dict__[key] def __repr__(self) -> str: """Return str(self).""" s = self.__class__.__name__ + '(\n' flag = False for k in sorted(self.__dict__.keys()): if self.__dict__.get(k, None) is not None: rpl = '\n' + ' ' * (6 + len(k)) obj = pprint.pformat(self.__getattr__(k)).replace('\n', rpl) s += f' {k}: {obj},\n' flag = True if flag: s += ')' else: s = self.__class__.__name__ + '()' return s def keys(self) -> List[str]: """Return self.keys().""" return self.__dict__.keys() def values(self) -> List[Any]: """Return self.values().""" return self.__dict__.values() def items(self) -> Any: """Return self.items().""" return self.__dict__.items() def get(self, k: str, d: Optional[Any] = None) -> Union['Batch', Any]: """Return self[k] if k in self else d. d defaults to None.""" if k in self.__dict__: return self.__getattr__(k) return d def to_numpy(self) -> None: """Change all torch.Tensor to numpy.ndarray. This is an inplace operation. """ for k, v in self.__dict__.items(): if isinstance(v, torch.Tensor): self.__dict__[k] = v.detach().cpu().numpy() elif isinstance(v, Batch): v.to_numpy() def to_torch(self, dtype: Optional[torch.dtype] = None, device: Union[str, int, torch.device] = 'cpu' ) -> None: """Change all numpy.ndarray to torch.Tensor. This is an inplace operation. """ if not isinstance(device, torch.device): device = torch.device(device) for k, v in self.__dict__.items(): if isinstance(v, np.ndarray): v = torch.from_numpy(v).to(device) if dtype is not None: v = v.type(dtype) self.__dict__[k] = v if isinstance(v, torch.Tensor): if dtype is not None and v.dtype != dtype: must_update_tensor = True elif v.device.type != device.type: must_update_tensor = True elif device.index is not None and \ device.index != v.device.index: must_update_tensor = True else: must_update_tensor = False if must_update_tensor: if dtype is not None: v = v.type(dtype) self.__dict__[k] = v.to(device) elif isinstance(v, Batch): v.to_torch(dtype, device) def append(self, batch: 'Batch') -> None: warnings.warn('Method append will be removed soon, please use ' ':meth:`~tianshou.data.Batch.cat`') return self.cat_(batch) def cat_(self, batch: 'Batch') -> None: """Concatenate a :class:`~tianshou.data.Batch` object to current batch. """ assert isinstance(batch, Batch), \ 'Only Batch is allowed to be concatenated in-place!' for k, v in batch.__dict__.items(): if v is None: continue if not hasattr(self, k) or self.__dict__[k] is None: self.__dict__[k] = copy.deepcopy(v) elif isinstance(v, np.ndarray): self.__dict__[k] = np.concatenate([self.__dict__[k], v]) elif isinstance(v, torch.Tensor): self.__dict__[k] = torch.cat([self.__dict__[k], v]) elif isinstance(v, list): self.__dict__[k] += copy.deepcopy(v) elif isinstance(v, Batch): self.__dict__[k].cat_(v) else: s = 'No support for method "cat" with type '\ f'{type(v)} in class Batch.' raise TypeError(s) @staticmethod def cat(batches: List['Batch']) -> None: """Concatenate a :class:`~tianshou.data.Batch` object into a single new batch. """ assert isinstance(batches, (tuple, list)), \ 'Only list of Batch instances is allowed to be '\ 'concatenated out-of-place!' batch = Batch() for batch_ in batches: batch.cat_(batch_) return batch @staticmethod def stack(batches: List['Batch']): """Stack a :class:`~tianshou.data.Batch` object into a single new batch. """ assert isinstance(batches, (tuple, list)), \ 'Only list of Batch instances is allowed to be '\ 'stacked out-of-place!' return Batch(np.array([batch.__dict__ for batch in batches])) def __len__(self) -> int: """Return len(self).""" r = [len(v) for k, v in self.__dict__.items() if hasattr(v, '__len__')] return max(r) if len(r) > 0 else 0 def split(self, size: Optional[int] = None, shuffle: bool = True) -> Iterator['Batch']: """Split whole data into multiple small batch. :param int size: if it is ``None``, it does not split the data batch; otherwise it will divide the data batch with the given size. Default to ``None``. :param bool shuffle: randomly shuffle the entire data batch if it is ``True``, otherwise remain in the same. Default to ``True``. """ length = len(self) if size is None: size = length if shuffle: indices = np.random.permutation(length) else: indices = np.arange(length) for idx in np.arange(0, length, size): yield self[indices[idx:(idx + size)]]