#!/usr/bin/env python from __future__ import absolute_import import tensorflow as tf import time import numpy as np # our lib imports here! It's ok to append path in examples import sys sys.path.append('..') from tianshou.core import losses from tianshou.data.batch import Batch import tianshou.data.advantage_estimation as advantage_estimation import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy from rllab.envs.box2d.cartpole_env import CartpoleEnv from rllab.envs.normalized_env import normalize # for tutorial purpose, placeholders are explicitly appended with '_ph' suffix # this example with batch_norm and dropout almost surely cannot improve. it just shows how to use those # layers and another way of writing networks. class MyPolicy(object): def __init__(self, observation_ph, is_training_ph, keep_prob_ph, action_dim): self.observation_ph = observation_ph self.is_training_ph = is_training_ph self.keep_prob_ph = keep_prob_ph self.action_dim = action_dim def __call__(self): net = tf.layers.dense(self.observation_ph, 32, activation=None) net = tf.layers.batch_normalization(net, training=self.is_training_ph) net = tf.nn.relu(net) net = tf.nn.dropout(net, keep_prob=self.keep_prob_ph) net = tf.layers.dense(net, 32, activation=tf.nn.relu) net = tf.layers.dropout(net, rate=1 - self.keep_prob_ph) action_mean = tf.layers.dense(net, action_dim, activation=None) action_logstd = tf.get_variable('action_logstd', shape=(self.action_dim,), dtype=tf.float32) return action_mean, action_logstd, None if __name__ == '__main__': env = normalize(CartpoleEnv()) observation_dim = env.observation_space.shape action_dim = env.action_space.flat_dim # clip_param = 0.2 num_batches = 10 batch_size = 128 seed = 10 np.random.seed(seed) tf.set_random_seed(seed) ### 1. build network with pure tf observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim) is_training_ph = tf.placeholder(tf.bool, shape=()) keep_prob_ph = tf.placeholder(tf.float32, shape=()) my_policy = MyPolicy(observation_ph, is_training_ph, keep_prob_ph, action_dim) ### 2. build policy, loss, optimizer pi = policy.Normal(my_policy, observation_placeholder=observation_ph, weight_update=0) clip_param = tf.placeholder(tf.float32, shape=(), name='ppo_loss_clip_param') ppo_loss_clip = losses.ppo_clip(pi, clip_param) total_loss = ppo_loss_clip optimizer = tf.train.AdamOptimizer(1e-4) train_op = optimizer.minimize(total_loss, var_list=pi.trainable_variables) ### 3. define data collection training_data = Batch(env, pi, [advantage_estimation.full_return], [pi]) ### 4. start training feed_dict_train = {is_training_ph: True, keep_prob_ph: 0.8} feed_dict_test = {is_training_ph: False, keep_prob_ph: 1} config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) # assign actor to pi_old pi.sync_weights() # TODO: automate this for policies with target network start_time = time.time() for i in range(100): # collect data training_data.collect(num_episodes=20, my_feed_dict=feed_dict_train) # print current return print('Epoch {}:'.format(i)) training_data.statistics() # manipulate decay_param if i < 30: feed_dict_train[clip_param] = 0.2 else: feed_dict_train[clip_param] = 0.1 # update network for _ in range(num_batches): feed_dict = training_data.next_batch(batch_size) feed_dict.update(feed_dict_train) sess.run(train_op, feed_dict=feed_dict) # assigning actor to pi_old pi.update_weights() # approximate test mode training_data.collect(num_episodes=10, my_feed_dict=feed_dict_test) print('After training:') training_data.statistics() print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))