#!/usr/bin/env python from __future__ import absolute_import import tensorflow as tf import time import numpy as np # our lib imports here! It's ok to append path in examples import sys sys.path.append('..') from tianshou.core import losses from tianshou.data.batch import Batch import tianshou.data.advantage_estimation as advantage_estimation import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy from rllab.envs.box2d.cartpole_env import CartpoleEnv from rllab.envs.normalized_env import normalize def policy_net(observation, action_dim, scope=None): """ Constructs the policy network. NOT NEEDED IN THE LIBRARY! this is pure tf :param observation: Placeholder for the observation. A tensor of shape (bs, x, y, channels) :param action_dim: int. The number of actions. :param scope: str. Specifying the scope of the variables. """ # with tf.variable_scope(scope): net = tf.layers.dense(observation, 32, activation=tf.nn.tanh) net = tf.layers.dense(net, 32, activation=tf.nn.tanh) act_mean = tf.layers.dense(net, action_dim, activation=None) return act_mean if __name__ == '__main__': # a clean version with only policy net, no value net env = normalize(CartpoleEnv()) observation_dim = env.observation_space.shape action_dim = env.action_space.flat_dim clip_param = 0.2 num_batches = 10 batch_size = 128 seed = 10 np.random.seed(seed) tf.set_random_seed(seed) # 1. build network with pure tf observation = tf.placeholder(tf.float32, shape=(None,) + observation_dim) # network input with tf.variable_scope('pi'): action_mean = policy_net(observation, action_dim, 'pi') action_logstd = tf.get_variable('action_logstd', shape=(action_dim,)) train_var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) # TODO: better management of TRAINABLE_VARIABLES with tf.variable_scope('pi_old'): action_mean_old = policy_net(observation, action_dim, 'pi_old') action_logstd_old = tf.get_variable('action_logstd_old', shape=(action_dim,)) pi_old_var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'pi_old') # 2. build losses, optimizers pi = policy.Normal(action_mean, action_logstd, observation_placeholder=observation) # YongRen: policy.Gaussian (could reference the policy in TRPO paper, my code is adapted from zhusuan.distributions) policy.DQN etc. # for continuous action space, you may need to change an environment to run pi_old = policy.Normal(action_mean_old, action_logstd_old, observation_placeholder=observation) action = tf.placeholder(dtype=tf.float32, shape=(None, action_dim)) # batch of integer actions advantage = tf.placeholder(dtype=tf.float32, shape=(None,)) # advantage values used in the Gradients ppo_loss_clip = losses.ppo_clip(action, advantage, clip_param, pi, pi_old) # TongzhengRen: losses.vpg ... management of placeholders and feed_dict total_loss = ppo_loss_clip optimizer = tf.train.AdamOptimizer(1e-4) train_op = optimizer.minimize(total_loss, var_list=train_var_list) # 3. define data collection training_data = Batch(env, pi, advantage_estimation.full_return) # YouQiaoben: finish and polish Batch, advantage_estimation.gae_lambda as in PPO paper # ShihongSong: Replay(), see dqn_example.py # maybe a dict to manage the elements to be collected # 4. start training config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) # sync pi and pi_old sess.run([tf.assign(theta_old, theta) for (theta_old, theta) in zip(pi_old_var_list, train_var_list)]) start_time = time.time() for i in range(100): # until some stopping criterion met... # collect data training_data.collect(num_episodes=20) # YouQiaoben, ShihongSong # print current return print('Epoch {}:'.format(i)) training_data.statistics() # update network for _ in range(num_batches): data = training_data.next_batch(batch_size) # YouQiaoben, ShihongSong # TODO: auto managing of the placeholders? or add this to params of data.Batch sess.run(train_op, feed_dict={observation: data['observations'], action: data['actions'], advantage: data['returns']}) # assigning pi to pi_old sess.run([tf.assign(theta_old, theta) for (theta_old, theta) in zip(pi_old_var_list, train_var_list)]) print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))