#!/usr/bin/env python from __future__ import absolute_import import tensorflow as tf import time import numpy as np # our lib imports here! It's ok to append path in examples import sys sys.path.append('..') from tianshou.core import losses from tianshou.data.batch import Batch import tianshou.data.advantage_estimation as advantage_estimation import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy from rllab.envs.box2d.cartpole_env import CartpoleEnv from rllab.envs.normalized_env import normalize # for tutorial purpose, placeholders are explicitly appended with '_ph' suffix if __name__ == '__main__': env = normalize(CartpoleEnv()) observation_dim = env.observation_space.shape action_dim = env.action_space.flat_dim clip_param = 0.2 num_batches = 10 batch_size = 128 seed = 10 np.random.seed(seed) tf.set_random_seed(seed) ### 1. build network with pure tf observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim) # network input def my_policy(): net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh) net = tf.layers.dense(net, 32, activation=tf.nn.tanh) action_mean = tf.layers.dense(net, action_dim, activation=None) action_logstd = tf.get_variable('action_logstd', shape=(action_dim, )) # value = tf.layers.dense(net, 1, activation=None) return action_mean, action_logstd, None # None value head # TODO: current implementation of passing function or overriding function has to return a value head # to allow network sharing between policy and value networks. This makes 'policy' and 'value_function' # imbalanced semantically (though they are naturally imbalanced since 'policy' is required to interact # with the environment and 'value_function' is not). I have an idea to solve this imbalance, which is # not based on passing function or overriding function. ### 2. build policy, losses, optimizers pi = policy.Normal(my_policy, observation_placeholder=observation_ph, weight_update=0) # action = tf.placeholder(dtype=tf.float32, shape=(None, action_dim)) # batch of integer actions # advantage = tf.placeholder(dtype=tf.float32, shape=(None,)) # advantage values used in the Gradients ppo_loss_clip = losses.ppo_clip(pi, clip_param) # TongzhengRen: losses.vpg ... management of placeholders and feed_dict total_loss = ppo_loss_clip optimizer = tf.train.AdamOptimizer(1e-4) train_op = optimizer.minimize(total_loss, var_list=pi.trainable_variables) ### 3. define data collection training_data = Batch(env, pi, advantage_estimation.full_return) # YouQiaoben: finish and polish Batch, advantage_estimation.gae_lambda as in PPO paper # ShihongSong: Replay(), see dqn_example.py # maybe a dict to manage the elements to be collected ### 4. start training # init = tf.global_variables_initializer() config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) # sync pi and pi_old pi.sync_weights() # TODO: automate this for policies with target network start_time = time.time() for i in range(100): # until some stopping criterion met... # collect data training_data.collect(num_episodes=20) # YouQiaoben, ShihongSong # print current return print('Epoch {}:'.format(i)) training_data.statistics() # update network for _ in range(num_batches): feed_dict = training_data.next_batch(batch_size) # YouQiaoben, ShihongSong sess.run(train_op, feed_dict=feed_dict) # assigning pi to pi_old pi.update_weights() print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))