Tianshou/AlphaGo/strategy.py
2017-12-20 00:43:31 +08:00

200 lines
7.4 KiB
Python

import os, sys
sys.path.append(os.path.join(os.path.dirname(__file__), os.path.pardir))
import numpy as np
import utils
import time
import copy
import network_small
import tensorflow as tf
from collections import deque
from tianshou.core.mcts.mcts import MCTS
NEIGHBOR_OFFSET = [[1, 0], [-1, 0], [0, -1], [0, 1]]
CORNER_OFFSET = [[-1, -1], [-1, 1], [1, 1], [1, -1]]
class GoEnv:
def __init__(self, **kwargs):
self.game = kwargs['game']
self.simulate_board = [utils.EMPTY] * (self.game.size ** 2)
self.simulate_latest_boards = deque(maxlen=8)
def _in_board(self, vertex):
x, y = vertex
if x < 1 or x > self.game.size: return False
if y < 1 or y > self.game.size: return False
return True
def _neighbor(self, vertex):
x, y = vertex
nei = []
for d in NEIGHBOR_OFFSET:
_x = x + d[0]
_y = y + d[1]
if self._in_board((_x, _y)):
nei.append((_x, _y))
return nei
def _corner(self, vertex):
x, y = vertex
corner = []
for d in CORNER_OFFSET:
_x = x + d[0]
_y = y + d[1]
if self._in_board((_x, _y)):
corner.append((_x, _y))
return corner
def _find_group(self, current_board, vertex):
color = current_board[self.game._flatten(vertex)]
# print ("color : ", color)
chain = set()
frontier = [vertex]
has_liberty = False
while frontier:
current = frontier.pop()
# print ("current : ", current)
chain.add(current)
for n in self._neighbor(current):
if current_board[self.game._flatten(n)] == color and not n in chain:
frontier.append(n)
if current_board[self.game._flatten(n)] == utils.EMPTY:
has_liberty = True
return has_liberty, chain
def _is_suicide(self, current_board, color, vertex):
current_board[self.game._flatten(vertex)] = color # assume that we already take this move
suicide = False
has_liberty, group = self._find_group(current_board, vertex)
if not has_liberty:
suicide = True # no liberty, suicide
for n in self._neighbor(vertex):
if current_board[self.game._flatten(n)] == utils.another_color(color):
opponent_liberty, group = self._find_group(current_board, n)
if not opponent_liberty:
suicide = False # this move is able to take opponent's stone, not suicide
current_board[self.game._flatten(vertex)] = utils.EMPTY # undo this move
return suicide
def _process_board(self, current_board, color, vertex):
nei = self._neighbor(vertex)
for n in nei:
if current_board[self.game._flatten(n)] == utils.another_color(color):
has_liberty, group = self._find_group(current_board, n)
if not has_liberty:
for b in group:
current_board[self.game._flatten(b)] = utils.EMPTY
def _check_global_isomorphous(self, history_boards, current_board, color, vertex):
repeat = False
next_board = copy.copy(current_board)
next_board[self.game._flatten(vertex)] = color
self._process_board(next_board, color, vertex)
if next_board in history_boards:
repeat = True
return repeat
def _is_eye(self, current_board, color, vertex):
nei = self._neighbor(vertex)
cor = self._corner(vertex)
ncolor = {color == current_board[self.game._flatten(n)] for n in nei}
if False in ncolor:
# print "not all neighbors are in same color with us"
return False
_, group = self._find_group(current_board, nei[0])
if set(nei) < group:
# print "all neighbors are in same group and same color with us"
return True
else:
opponent_number = [current_board[self.game._flatten(c)] for c in cor].count(-color)
opponent_propotion = float(opponent_number) / float(len(cor))
if opponent_propotion < 0.5:
# print "few opponents, real eye"
return True
else:
# print "many opponents, fake eye"
return False
def _knowledge_prunning(self, current_board, color, vertex):
### check if it is an eye of yourself
### assumptions : notice that this judgement requires that the state is an endgame
if self._is_eye(current_board, color, vertex):
return False
return True
def _sa2cv(self, state, action):
# State is the play board, the shape is [1, self.game.size, self.game.size, 17], action is an index.
# We need to transfer the (state, action) pair into (color, vertex) pair to simulate the move
if state[0, 0, 0, -1] == utils.BLACK:
color = utils.BLACK
else:
color = utils.WHITE
if action == self.game.size ** 2:
vertex = (0, 0)
else:
vertex = self.game._deflatten(action)
return color, vertex
def _is_valid(self, history_boards, current_board, color, vertex):
### in board
if not self._in_board(vertex):
return False
### already have stone
if not current_board[self.game._flatten(vertex)] == utils.EMPTY:
return False
### check if it is suicide
if self._is_suicide(current_board, color, vertex):
return False
### forbid global isomorphous
if self._check_global_isomorphous(history_boards, current_board, color, vertex):
return False
return True
def simulate_is_valid(self, history_boards, current_board, state, action):
# initialize simulate_latest_boards and simulate_board from state
self.simulate_latest_boards.clear()
for i in range(8):
self.simulate_latest_boards.append((state[:, :, :, i] - state[:, :, :, i + 8]).reshape(-1).tolist())
self.simulate_board = copy.copy(self.simulate_latest_boards[-1])
color, vertex = self._sa2cv(state, action)
if not self._is_valid(history_boards, current_board, color, vertex):
return False
if not self._knowledge_prunning(current_board, color, vertex):
return False
return True
def _do_move(self, color, vertex):
if vertex == utils.PASS:
return True
id_ = self.game._flatten(vertex)
if self.simulate_board[id_] == utils.EMPTY:
self.simulate_board[id_] = color
return True
else:
return False
def simulate_step_forward(self, state, action):
# initialize the simulate_board from state
self.simulate_board = (state[:, :, :, 7] - state[:, :, :, 15]).reshape(-1).tolist()
color, vertex = self._sa2cv(state, action)
self._do_move(color, vertex)
new_state = np.concatenate(
[state[:, :, :, 1:8], (np.array(self.simulate_board) == utils.BLACK).reshape(1, self.game.size, self.game.size, 1),
state[:, :, :, 9:16], (np.array(self.simulate_board) == utils.WHITE).reshape(1, self.game.size, self.game.size, 1),
np.array(1 - state[:, :, :, -1]).reshape(1, self.game.size, self.game.size, 1)],
axis=3)
return new_state, 0