Tianshou/test/base/test_collector.py
2020-04-29 12:14:53 +08:00

113 lines
3.8 KiB
Python

import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import BasePolicy
from tianshou.env import VectorEnv, SubprocVectorEnv
from tianshou.data import Collector, Batch, ReplayBuffer
if __name__ == '__main__':
from env import MyTestEnv
else: # pytest
from test.base.env import MyTestEnv
class MyPolicy(BasePolicy):
def __init__(self, dict_state=False):
super().__init__()
self.dict_state = dict_state
def forward(self, batch, state=None):
if self.dict_state:
return Batch(act=np.ones(batch.obs['index'].shape[0]))
return Batch(act=np.ones(batch.obs.shape[0]))
def learn(self):
pass
def equal(a, b):
return abs(np.array(a) - np.array(b)).sum() < 1e-6
class Logger(object):
def __init__(self, writer):
self.cnt = 0
self.writer = writer
def log(self, info):
self.writer.add_scalar('key', info['key'], global_step=self.cnt)
self.cnt += 1
def test_collector():
writer = SummaryWriter('log/collector')
logger = Logger(writer)
env_fns = [
lambda: MyTestEnv(size=2, sleep=0),
lambda: MyTestEnv(size=3, sleep=0),
lambda: MyTestEnv(size=4, sleep=0),
lambda: MyTestEnv(size=5, sleep=0),
]
venv = SubprocVectorEnv(env_fns)
policy = MyPolicy()
env = env_fns[0]()
c0 = Collector(policy, env, ReplayBuffer(size=100, ignore_obs_next=False))
c0.collect(n_step=3, log_fn=logger.log)
assert equal(c0.buffer.obs[:3], [0, 1, 0])
assert equal(c0.buffer[:3].obs_next, [1, 2, 1])
c0.collect(n_episode=3, log_fn=logger.log)
assert equal(c0.buffer.obs[:8], [0, 1, 0, 1, 0, 1, 0, 1])
assert equal(c0.buffer[:8].obs_next, [1, 2, 1, 2, 1, 2, 1, 2])
c1 = Collector(policy, venv, ReplayBuffer(size=100, ignore_obs_next=False))
c1.collect(n_step=6)
assert equal(c1.buffer.obs[:11], [0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3])
assert equal(c1.buffer[:11].obs_next, [1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4])
c1.collect(n_episode=2)
assert equal(c1.buffer.obs[11:21], [0, 1, 2, 3, 4, 0, 1, 0, 1, 2])
assert equal(c1.buffer[11:21].obs_next, [1, 2, 3, 4, 5, 1, 2, 1, 2, 3])
c2 = Collector(policy, venv, ReplayBuffer(size=100, ignore_obs_next=False))
c2.collect(n_episode=[1, 2, 2, 2])
assert equal(c2.buffer.obs_next[:26], [
1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5,
1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5])
c2.reset_env()
c2.collect(n_episode=[2, 2, 2, 2])
assert equal(c2.buffer.obs_next[26:54], [
1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5,
1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5])
def test_collector_with_dict_state():
env = MyTestEnv(size=5, sleep=0, dict_state=True)
policy = MyPolicy(dict_state=True)
c0 = Collector(policy, env, ReplayBuffer(size=100))
c0.collect(n_step=3)
c0.collect(n_episode=3)
env_fns = [
lambda: MyTestEnv(size=2, sleep=0, dict_state=True),
lambda: MyTestEnv(size=3, sleep=0, dict_state=True),
lambda: MyTestEnv(size=4, sleep=0, dict_state=True),
lambda: MyTestEnv(size=5, sleep=0, dict_state=True),
]
envs = VectorEnv(env_fns)
c1 = Collector(policy, envs, ReplayBuffer(size=100))
c1.collect(n_step=10)
c1.collect(n_episode=[2, 1, 1, 2])
batch = c1.sample(10)
print(batch)
c0.buffer.update(c1.buffer)
assert equal(c0.buffer[:len(c0.buffer)].obs.index, [
0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1.,
0., 1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4., 0., 1., 0.,
1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4.])
c2 = Collector(policy, envs, ReplayBuffer(size=100, stack_num=4))
c2.collect(n_episode=[0, 0, 0, 10])
batch = c2.sample(10)
print(batch['obs_next']['index'])
if __name__ == '__main__':
test_collector()
test_collector_with_dict_state()