Tianshou/test/offline/test_gail.py
maxhuettenrauch 522f7fbf98
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:

1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.

They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`

```python

T = TypeVar("T", bound=int)


def f() -> T:
  return 3
```

3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...

Closes #933

---------

Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00

231 lines
8.9 KiB
Python

import argparse
import os
import pickle
import pprint
import gymnasium as gym
import numpy as np
import torch
from torch.distributions import Independent, Normal
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import GAILPolicy
from tianshou.trainer import OnpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import ActorCritic, Net
from tianshou.utils.net.continuous import ActorProb, Critic
if __name__ == "__main__":
from gather_pendulum_data import expert_file_name, gather_data
else: # pytest
from test.offline.gather_pendulum_data import expert_file_name, gather_data
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="Pendulum-v1")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--disc-lr", type=float, default=5e-4)
parser.add_argument("--gamma", type=float, default=0.95)
parser.add_argument("--epoch", type=int, default=5)
parser.add_argument("--step-per-epoch", type=int, default=150000)
parser.add_argument("--episode-per-collect", type=int, default=16)
parser.add_argument("--repeat-per-collect", type=int, default=2)
parser.add_argument("--disc-update-num", type=int, default=2)
parser.add_argument("--batch-size", type=int, default=128)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
parser.add_argument("--training-num", type=int, default=16)
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
# ppo special
parser.add_argument("--vf-coef", type=float, default=0.25)
parser.add_argument("--ent-coef", type=float, default=0.0)
parser.add_argument("--eps-clip", type=float, default=0.2)
parser.add_argument("--max-grad-norm", type=float, default=0.5)
parser.add_argument("--gae-lambda", type=float, default=0.95)
parser.add_argument("--rew-norm", type=int, default=1)
parser.add_argument("--dual-clip", type=float, default=None)
parser.add_argument("--value-clip", type=int, default=1)
parser.add_argument("--norm-adv", type=int, default=1)
parser.add_argument("--recompute-adv", type=int, default=0)
parser.add_argument("--resume", action="store_true")
parser.add_argument("--save-interval", type=int, default=4)
parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
return parser.parse_known_args()[0]
def test_gail(args=get_args()):
if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
if args.load_buffer_name.endswith(".hdf5"):
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
else:
with open(args.load_buffer_name, "rb") as f:
buffer = pickle.load(f)
else:
buffer = gather_data()
env = gym.make(args.task)
if args.reward_threshold is None:
default_reward_threshold = {"Pendulum-v0": -1100, "Pendulum-v1": -1100}
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
# you can also use tianshou.env.SubprocVectorEnv
# train_envs = gym.make(args.task)
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = ActorProb(net, args.action_shape, max_action=args.max_action, device=args.device).to(
args.device,
)
critic = Critic(
Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device),
device=args.device,
).to(args.device)
actor_critic = ActorCritic(actor, critic)
# orthogonal initialization
for m in actor_critic.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
torch.nn.init.zeros_(m.bias)
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
# discriminator
disc_net = Critic(
Net(
args.state_shape,
action_shape=args.action_shape,
hidden_sizes=args.hidden_sizes,
activation=torch.nn.Tanh,
device=args.device,
concat=True,
),
device=args.device,
).to(args.device)
for m in disc_net.modules():
if isinstance(m, torch.nn.Linear):
# orthogonal initialization
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
torch.nn.init.zeros_(m.bias)
disc_optim = torch.optim.Adam(disc_net.parameters(), lr=args.disc_lr)
# replace DiagGuassian with Independent(Normal) which is equivalent
# pass *logits to be consistent with policy.forward
def dist(*logits):
return Independent(Normal(*logits), 1)
policy = GAILPolicy(
actor=actor,
critic=critic,
optim=optim,
dist_fn=dist,
expert_buffer=buffer,
disc_net=disc_net,
disc_optim=disc_optim,
disc_update_num=args.disc_update_num,
discount_factor=args.gamma,
max_grad_norm=args.max_grad_norm,
eps_clip=args.eps_clip,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
reward_normalization=args.rew_norm,
advantage_normalization=args.norm_adv,
recompute_advantage=args.recompute_adv,
dual_clip=args.dual_clip,
value_clip=args.value_clip,
gae_lambda=args.gae_lambda,
action_space=env.action_space,
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
)
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, "gail")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer, save_interval=args.save_interval)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards):
return mean_rewards >= args.reward_threshold
def save_checkpoint_fn(epoch, env_step, gradient_step):
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
ckpt_path = os.path.join(log_path, "checkpoint.pth")
# Example: saving by epoch num
# ckpt_path = os.path.join(log_path, f"checkpoint_{epoch}.pth")
torch.save(
{
"model": policy.state_dict(),
"optim": optim.state_dict(),
},
ckpt_path,
)
return ckpt_path
if args.resume:
# load from existing checkpoint
print(f"Loading agent under {log_path}")
ckpt_path = os.path.join(log_path, "checkpoint.pth")
if os.path.exists(ckpt_path):
checkpoint = torch.load(ckpt_path, map_location=args.device)
policy.load_state_dict(checkpoint["model"])
optim.load_state_dict(checkpoint["optim"])
print("Successfully restore policy and optim.")
else:
print("Fail to restore policy and optim.")
# trainer
result = OnpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
repeat_per_collect=args.repeat_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
episode_per_collect=args.episode_per_collect,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
resume_from_log=args.resume,
save_checkpoint_fn=save_checkpoint_fn,
).run()
assert stop_fn(result.best_reward)
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
print(f"Final reward: {result.returns_stat.mean}, length: {result.lens_stat.mean}")
if __name__ == "__main__":
test_gail()