Yi Su 06aaad460e
Fix a bug in loading offline data (#768)
This PR fixes #766 .

Co-authored-by: Yi Su <yi_su@apple.com>
2022-11-03 16:12:33 -07:00

53 lines
1.7 KiB
Python

from typing import Tuple
import d4rl
import gym
import h5py
import numpy as np
from tianshou.data import ReplayBuffer
from tianshou.utils import RunningMeanStd
def load_buffer_d4rl(expert_data_task: str) -> ReplayBuffer:
dataset = d4rl.qlearning_dataset(gym.make(expert_data_task))
replay_buffer = ReplayBuffer.from_data(
obs=dataset["observations"],
act=dataset["actions"],
rew=dataset["rewards"],
done=dataset["terminals"],
obs_next=dataset["next_observations"],
terminated=dataset["terminals"],
truncated=np.zeros(len(dataset["terminals"]))
)
return replay_buffer
def load_buffer(buffer_path: str) -> ReplayBuffer:
with h5py.File(buffer_path, "r") as dataset:
buffer = ReplayBuffer.from_data(
obs=dataset["observations"],
act=dataset["actions"],
rew=dataset["rewards"],
done=dataset["terminals"],
obs_next=dataset["next_observations"],
terminated=dataset["terminals"],
truncated=np.zeros(len(dataset["terminals"]))
)
return buffer
def normalize_all_obs_in_replay_buffer(
replay_buffer: ReplayBuffer
) -> Tuple[ReplayBuffer, RunningMeanStd]:
# compute obs mean and var
obs_rms = RunningMeanStd()
obs_rms.update(replay_buffer.obs)
_eps = np.finfo(np.float32).eps.item()
# normalize obs
replay_buffer._meta["obs"] = (replay_buffer.obs -
obs_rms.mean) / np.sqrt(obs_rms.var + _eps)
replay_buffer._meta["obs_next"] = (replay_buffer.obs_next -
obs_rms.mean) / np.sqrt(obs_rms.var + _eps)
return replay_buffer, obs_rms