Michael Panchenko 07702fc007
Improved typing and reduced duplication (#912)
# Goals of the PR

The PR introduces **no changes to functionality**, apart from improved
input validation here and there. The main goals are to reduce some
complexity of the code, to improve types and IDE completions, and to
extend documentation and block comments where appropriate. Because of
the change to the trainer interfaces, many files are affected (more
details below), but still the overall changes are "small" in a certain
sense.

## Major Change 1 - BatchProtocol

**TL;DR:** One can now annotate which fields the batch is expected to
have on input params and which fields a returned batch has. Should be
useful for reading the code. getting meaningful IDE support, and
catching bugs with mypy. This annotation strategy will continue to work
if Batch is replaced by TensorDict or by something else.

**In more detail:** Batch itself has no fields and using it for
annotations is of limited informational power. Batches with fields are
not separate classes but instead instances of Batch directly, so there
is no type that could be used for annotation. Fortunately, python
`Protocol` is here for the rescue. With these changes we can now do
things like

```python
class ActionBatchProtocol(BatchProtocol):
    logits: Sequence[Union[tuple, torch.Tensor]]
    dist: torch.distributions.Distribution
    act: torch.Tensor
    state: Optional[torch.Tensor]


class RolloutBatchProtocol(BatchProtocol):
    obs: torch.Tensor
    obs_next: torch.Tensor
    info: Dict[str, Any]
    rew: torch.Tensor
    terminated: torch.Tensor
    truncated: torch.Tensor

class PGPolicy(BasePolicy):
    ...

    def forward(
        self,
        batch: RolloutBatchProtocol,
        state: Optional[Union[dict, Batch, np.ndarray]] = None,
        **kwargs: Any,
    ) -> ActionBatchProtocol:

```

The IDE and mypy are now very helpful in finding errors and in
auto-completion, whereas before the tools couldn't assist in that at
all.

## Major Change 2 - remove duplication in trainer package

**TL;DR:** There was a lot of duplication between `BaseTrainer` and its
subclasses. Even worse, it was almost-duplication. There was also
interface fragmentation through things like `onpolicy_trainer`. Now this
duplication is gone and all downstream code was adjusted.

**In more detail:** Since this change affects a lot of code, I would
like to explain why I thought it to be necessary.

1. The subclasses of `BaseTrainer` just duplicated docstrings and
constructors. What's worse, they changed the order of args there, even
turning some kwargs of BaseTrainer into args. They also had the arg
`learning_type` which was passed as kwarg to the base class and was
unused there. This made things difficult to maintain, and in fact some
errors were already present in the duplicated docstrings.
2. The "functions" a la `onpolicy_trainer`, which just called the
`OnpolicyTrainer.run`, not only introduced interface fragmentation but
also completely obfuscated the docstring and interfaces. They themselves
had no dosctring and the interface was just `*args, **kwargs`, which
makes it impossible to understand what they do and which things can be
passed without reading their implementation, then reading the docstring
of the associated class, etc. Needless to say, mypy and IDEs provide no
support with such functions. Nevertheless, they were used everywhere in
the code-base. I didn't find the sacrifices in clarity and complexity
justified just for the sake of not having to write `.run()` after
instantiating a trainer.
3. The trainers are all very similar to each other. As for my
application I needed a new trainer, I wanted to understand their
structure. The similarity, however, was hard to discover since they were
all in separate modules and there was so much duplication. I kept
staring at the constructors for a while until I figured out that
essentially no changes to the superclass were introduced. Now they are
all in the same module and the similarities/differences between them are
much easier to grasp (in my opinion)
4. Because of (1), I had to manually change and check a lot of code,
which was very tedious and boring. This kind of work won't be necessary
in the future, since now IDEs can be used for changing signatures,
renaming args and kwargs, changing class names and so on.

I have some more reasons, but maybe the above ones are convincing
enough.

## Minor changes: improved input validation and types

I added input validation for things like `state` and `action_scaling`
(which only makes sense for continuous envs). After adding this, some
tests failed to pass this validation. There I added
`action_scaling=isinstance(env.action_space, Box)`, after which tests
were green. I don't know why the tests were green before, since action
scaling doesn't make sense for discrete actions. I guess some aspect was
not tested and didn't crash.

I also added Literal in some places, in particular for
`action_bound_method`. Now it is no longer allowed to pass an empty
string, instead one should pass `None`. Also here there is input
validation with clear error messages.

@Trinkle23897 The functional tests are green. I didn't want to fix the
formatting, since it will change in the next PR that will solve #914
anyway. I also found a whole bunch of code in `docs/_static`, which I
just deleted (shouldn't it be copied from the sources during docs build
instead of committed?). I also haven't adjusted the documentation yet,
which atm still mentions the trainers of the type
`onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()`

## Breaking Changes

The adjustments to the trainer package introduce breaking changes as
duplicated interfaces are deleted. However, it should be very easy for
users to adjust to them

---------

Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 09:54:46 -07:00

211 lines
7.8 KiB
Python

from copy import deepcopy
from typing import Any, Dict, Optional, Union, cast
import numpy as np
import torch
from tianshou.data import Batch, ReplayBuffer, to_numpy, to_torch_as
from tianshou.data.batch import BatchProtocol
from tianshou.data.types import (
BatchWithReturnsProtocol,
ModelOutputBatchProtocol,
RolloutBatchProtocol,
)
from tianshou.policy import BasePolicy
class DQNPolicy(BasePolicy):
"""Implementation of Deep Q Network. arXiv:1312.5602.
Implementation of Double Q-Learning. arXiv:1509.06461.
Implementation of Dueling DQN. arXiv:1511.06581 (the dueling DQN is
implemented in the network side, not here).
:param torch.nn.Module model: a model following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.optim.Optimizer optim: a torch.optim for optimizing the model.
:param float discount_factor: in [0, 1].
:param int estimation_step: the number of steps to look ahead. Default to 1.
:param int target_update_freq: the target network update frequency (0 if
you do not use the target network). Default to 0.
:param bool reward_normalization: normalize the reward to Normal(0, 1).
Default to False.
:param bool is_double: use double dqn. Default to True.
:param bool clip_loss_grad: clip the gradient of the loss in accordance
with nature14236; this amounts to using the Huber loss instead of
the MSE loss. Default to False.
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
optimizer in each policy.update(). Default to None (no lr_scheduler).
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(
self,
model: torch.nn.Module,
optim: torch.optim.Optimizer,
discount_factor: float = 0.99,
estimation_step: int = 1,
target_update_freq: int = 0,
reward_normalization: bool = False,
is_double: bool = True,
clip_loss_grad: bool = False,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
self.model = model
self.optim = optim
self.eps = 0.0
assert 0.0 <= discount_factor <= 1.0, "discount factor should be in [0, 1]"
self._gamma = discount_factor
assert estimation_step > 0, "estimation_step should be greater than 0"
self._n_step = estimation_step
self._target = target_update_freq > 0
self._freq = target_update_freq
self._iter = 0
if self._target:
self.model_old = deepcopy(self.model)
self.model_old.eval()
self._rew_norm = reward_normalization
self._is_double = is_double
self._clip_loss_grad = clip_loss_grad
def set_eps(self, eps: float) -> None:
"""Set the eps for epsilon-greedy exploration."""
self.eps = eps
def train(self, mode: bool = True) -> "DQNPolicy":
"""Set the module in training mode, except for the target network."""
self.training = mode
self.model.train(mode)
return self
def sync_weight(self) -> None:
"""Synchronize the weight for the target network."""
self.model_old.load_state_dict(self.model.state_dict())
def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor:
batch = buffer[indices] # batch.obs_next: s_{t+n}
result = self(batch, input="obs_next")
if self._target:
# target_Q = Q_old(s_, argmax(Q_new(s_, *)))
target_q = self(batch, model="model_old", input="obs_next").logits
else:
target_q = result.logits
if self._is_double:
return target_q[np.arange(len(result.act)), result.act]
else: # Nature DQN, over estimate
return target_q.max(dim=1)[0]
def process_fn(
self, batch: RolloutBatchProtocol, buffer: ReplayBuffer, indices: np.ndarray
) -> BatchWithReturnsProtocol:
"""Compute the n-step return for Q-learning targets.
More details can be found at
:meth:`~tianshou.policy.BasePolicy.compute_nstep_return`.
"""
return self.compute_nstep_return(
batch, buffer, indices, self._target_q, self._gamma, self._n_step,
self._rew_norm
)
def compute_q_value(
self, logits: torch.Tensor, mask: Optional[np.ndarray]
) -> torch.Tensor:
"""Compute the q value based on the network's raw output and action mask."""
if mask is not None:
# the masked q value should be smaller than logits.min()
min_value = logits.min() - logits.max() - 1.0
logits = logits + to_torch_as(1 - mask, logits) * min_value
return logits
def forward(
self,
batch: RolloutBatchProtocol,
state: Optional[Union[dict, BatchProtocol, np.ndarray]] = None,
model: str = "model",
input: str = "obs",
**kwargs: Any,
) -> ModelOutputBatchProtocol:
"""Compute action over the given batch data.
If you need to mask the action, please add a "mask" into batch.obs, for
example, if we have an environment that has "0/1/2" three actions:
::
batch == Batch(
obs=Batch(
obs="original obs, with batch_size=1 for demonstration",
mask=np.array([[False, True, False]]),
# action 1 is available
# action 0 and 2 are unavailable
),
...
)
:return: A :class:`~tianshou.data.Batch` which has 3 keys:
* ``act`` the action.
* ``logits`` the network's raw output.
* ``state`` the hidden state.
.. seealso::
Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for
more detailed explanation.
"""
model = getattr(self, model)
obs = batch[input]
obs_next = obs.obs if hasattr(obs, "obs") else obs
logits, hidden = model(obs_next, state=state, info=batch.info)
q = self.compute_q_value(logits, getattr(obs, "mask", None))
if not hasattr(self, "max_action_num"):
self.max_action_num = q.shape[1]
act = to_numpy(q.max(dim=1)[1])
result = Batch(logits=logits, act=act, state=hidden)
return cast(ModelOutputBatchProtocol, result)
def learn(self, batch: RolloutBatchProtocol, *args: Any,
**kwargs: Any) -> Dict[str, float]:
if self._target and self._iter % self._freq == 0:
self.sync_weight()
self.optim.zero_grad()
weight = batch.pop("weight", 1.0)
q = self(batch).logits
q = q[np.arange(len(q)), batch.act]
returns = to_torch_as(batch.returns.flatten(), q)
td_error = returns - q
if self._clip_loss_grad:
y = q.reshape(-1, 1)
t = returns.reshape(-1, 1)
loss = torch.nn.functional.huber_loss(y, t, reduction="mean")
else:
loss = (td_error.pow(2) * weight).mean()
batch.weight = td_error # prio-buffer
loss.backward()
self.optim.step()
self._iter += 1
return {"loss": loss.item()}
def exploration_noise(
self,
act: Union[np.ndarray, BatchProtocol],
batch: RolloutBatchProtocol,
) -> Union[np.ndarray, BatchProtocol]:
if isinstance(act, np.ndarray) and not np.isclose(self.eps, 0.0):
bsz = len(act)
rand_mask = np.random.rand(bsz) < self.eps
q = np.random.rand(bsz, self.max_action_num) # [0, 1]
if hasattr(batch.obs, "mask"):
q += batch.obs.mask
rand_act = q.argmax(axis=1)
act[rand_mask] = rand_act[rand_mask]
return act